IAML: Optimization

Nigel Goddard and Victor Lavrenko
School of Informatics

Semester 1

1/24

Why we use optimization in machine learning
The general optimization problem

Gradient descent

Problems with gradient descent

Batch versus online

Second-order methods

Constrained optimization

vV V.V vV v VY

Many illustrations, text, and general ideas from these slides are taken from Sam Roweis (1972-2010).

2/24

Why Optimization

» A main idea in machine learning is to convert the learning
problem into a continuous optimization problem.

» Examples: Linear regression, logistic regression (we have
seen), neural networks, SVMs (we will see these later)

» One way to do this is maximum likelihood

K(W) = IOg P(}’1 X1, Y2, X2,..., Vn, xn‘w)

n

= log [[p(i, xilw)

i=1

n
= log p(yi, xi|w)

i=1

» Example: Linear regression

3/24

» End result: an “error function” E(w) which we want to
minimize.

» e.g., E(w) can be the negative of the log likelihood.

» Consider a fixed training set; think in weight (not input)
space. At each setting of the weights there is some error
(given the fixed training set): this defines an error surface
in weight space.

» Learning == descending the error surface.

» If the data are IID, the error function E is a sum of error

function E; for each data point
E

E(w)

Role of Smoothness

If E completely unconstrained, minimization is impossible.

‘\
w

All we could do is search through all possible values w.

E(w)

Key idea: If E is continuous, then measuring E(w) gives

information about E at many nearby values.
5/24

Role of Derivatives

» If we wiggle wy and keep everything else the same, does
the error get better or worse?

» Calculus has an answer to exactly this question: g—m’fk

» So: use a differentiable cost function E and compute
partial derivatives of each parameter
» The vector of partial derivatives is called the gradient of the

; : _ (OE OE oE
error. It |sal\:ivr|tten VE = (Tww D a—wn). Alternate
notation 3.

» It points in the direction of steepest error descent in weight
space.
» Three crucial questions:

» How do we compute the gradient VE efficiently?
» Once we have the gradient, how do we minimize the error?
» Where will we end up in weight space?

6/24

Numerical Optimization Algorithms

» Numerical optimization algorithms try to solve the
general problem

mvjn E(w)

» Most commonly, a numerical optimization procedure takes
two inputs:
» A procedure that computes E(w)
» A procedure that computes the partial derivative g—v’fj
» (Aside: Some use less information, i.e., they don’t use
gradients. Some use more information, i.e., higher order
derivative. We won’t go into these algorithms in the
course.)

7/24

Optimization Algorithm Cartoon

» Basically, numerical optimization algorithms are iterative.
They generate a sequence of points

Wo, W, Wo, ...
E(Wo)7 E(W1), E(WQ), .
VE(wop), VE(W1), VE(W2), ...

» Basic optimization algorithm is

initialize w
while E(w) is unacceptably high
calculate g = VE
Compute direction d from w, E(w), g
(can use previous gradients as well...)
w—w-nd
end while
return w

8/24

A Choice of Direction

» The simplest choice d is the current gradient VE.
» ltis locally the steepest descent direction.

» (Technically, the reason for this choice is Taylor’'s theorem
from calculus.)

E(w\

9/24

Gradient Descent

» Simple gradient descent algorithm:
initialize w
while L(w) is unacceptably high
calculate g — 9%
W—W-nd
end while
return w

» nis known as the step size (sometimes called learning
rate)
» We must choose n > 0.
» 7 too small — too slow
» 7 too large — instability

10/24

Effect of Step Size

Goal: Minimize

E(w) = w?
» Take n = 0.1. Works well.
87
6 Wo = 1.0
5 wi =wp—0.1-2up =0.8
4 wo =wq —0.1-2wy = 0.64
2 W3:W2—0.1-2W2:0.512
07

3 -2 -1 0 1 2 3 wos = 0.0047

11/24

Effect of Step Size

» Take n = 1.1. Not so good. If you

Goal: Minimize step too far, you can leap over the

— 2
E(w) =w region that contains the minimum
87
wo=1.0
- °7 wi=Wo—1.1-2up=-1.2
& o4 Wo =Wy —1.1-2wy = 1.44
5 W3:W2—1.1-2W2:—1.72
7\ I I I I I I W25 — 7950

w » Finally, take = 0.000001. What
happens here?

12/24

“Bold Driver” Gradient Descent

» Simple heuristic for choosing n which you can use if you're
desperate.

initialize w, n

initialize e — E(w); g «— VE(w) whilep > 0
Wi —W-—ng
er = E(wy); 91 =VE

ifei > e
n=n/2
else
n=1.01n,w—wy;g=0;
end while
return w

» Finds a local minimum of E.

13/24

Batch vs online

» So far all the objective function we have seen look like:

n
E(w; D) =) Ej(w; y;,X;).
i=1
D = {(x1, 1), (X2, ¥2), - - - (Xn, ¥n) } is the training set.
» Each term sum depends on only one training instance
» Example: Logistic regression: E;(w; y;, X;) = log p(y;|X;, W).
» The gradient in this case is always

9E - OF;
ow 4~ ow
i=1
» The algorithm on slide 10 scans all the training instances
before changing the parameters.
» Seems dumb if we have millions of training instances.
Surely we can get a gradient that is “good enough” from
fewer instances, e.g., a couple of thousand? Or maybe

even from just one?
14/24

Batch vs online

» Batch learning: use all patterns in training set, and update
weights after calculating

OE _ \~ OF;
ow — ow
» On-line learning: adapt weights after each pattern
presentation, using 9&i
» Batch more powerful optimization methods

» Batch easier to analyze

» On-line more feasible for huge or continually growing
datasets

» On-line may have ability to jump over local optima

15/24

Algorithms for Batch Gradient Descent

» Here is batch gradient descent.

initialize w

while E(w) is unacceptably high
calculate g — YN, 95
We—w-nd

end while

return w

» This is just the algorithm we have seen before. We have
just “substituted in” the fact that £ = -~ | E;.

16/24

Algorithms for Online Gradient Descent

» Here is (a particular type of) online gradient descent
algorithm
initialize w
while E(w) is unacceptably high
Pick j as uniform random integerin1... N

calculate g — g—vE\{
W—w-7nd
end while
return w

» This version is also called “stochastic gradient ascent”
because we have picked the training instance randomly.

» There are other variants of online gradient descent.

17/24

Problems With Gradient Descent

» Setting the step size n

» Shallow valleys

» Highly curved error surfaces
» Local minima

18/24

Shallow Valleys

» Typical gradient descent can be fooled in several ways,
which is why more sophisticated methods are used when
possible. One problem:

» Gradient descent goes very slowly once it hits the shallow
valley.

» One hack to deal with this is momentum
dt = ﬂdt_1 + (1 — ﬁ)nVE(Wt)

» Now you have to set both » and 5. Can be difficult and
irritating.

19/24

Curved Error Surfaces

» A second problem with gradient descent is that the
gradient might not point towards the optimum. This is

» Note: gradient is the locally steepest direction. Need not
directly point toward local optimum.

» Local curvature is measured by the Hessian matrix:
H,'j = 62E/6W,Wj
» By the way, do these ellipses remind you of anything?

20/24

Local Minima

» |f you follow the gradient, where will you end up? Once you
hit a local minimum, gradient is 0, so you stop.

parameter space

» Certain nice functions, such as squared error, logistic
regression likelihood are convex, meaning that the second
derivative is always positive. This implies that any local
minimum is global.

» There is no great solution to this problem. It is a
fundamental one. Usually, the best you can do is rerun the
optimizer multiple times from different random starting
points.

21/24

Advanced Topics That We Will Not Cover (Part |)

» Some of these issues (shallow valley, curved error
surfaces) can be fixed

» Some of these are second-order methods like Newton'’s
method that use the second derivatives

» Also there are fancy first-order methods like quasi-Newton
methods (I like one called limited memory BFGS) and
conjugate gradient

» They are the state of the art methods for logistic regression
(as long as there are not too many data points)

» We will not discuss these methods in the course.

» Other issues (like local minima) cannot be easily fixed

22/24

Advanced Topics That We Will Not Cover (Part Il)

» Sometimes the optimization problem has constraints
» Example: Observe the points {0.5,1.0} from a Gaussian
with known mean p = 0.8 and unknown standard deviation
o. Want to estimate o by maximum likelihood.
» Constraint: & must be positive.
» In this case to find the maximum likelihood solution, the
optimization problem is

2

’

max) 5,z (Xi =)2
i—

o

subjectto o > 0

» There are ways to solve this (in this case: can be done
analytically). We will not discuss them in this course.

23/24

» Complex mathematical area. Do not implement your own
optimization algorithms if you can help it!

» Stuff you should understand:

>

v vy VvYy

How and why we convert learning problems into
optimization problems

Modularity between modelling and optimization
Gradient descent

Why gradient descent can run into problems
Especially local minima

» Methods of choice: Fancy first-order methods (e.g.,
quasi-Newton, CG) for moderate amounts of data.
Stochastic gradient for large amounts of data.

24/24

