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Semester 1

True vs. observed dimensionality

* Get a population, predict some property
— instances represented as {urefu, height} pairs
— what is the dimensionality of this data?

* * Data points over time from
T ¢ o different geographic areas
= * over time:
% ® 0 *  X,;: # of traffic accidents
30 X,: # of burst water pipes

* X5t snow-plow expenditures

height [inches] * X, # of forest fires

. y - - X:: # patients with heat stroke
height” = “urefu” in Swahili 5 7P _
Temperature below freezing?
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Overview

Curse of dimensionality

Different ways to reduce dimensionality

Principal Components Analysis (PCA)

Examples: Eigen Faces, Topics in Text

PCA for classification

Witten & Frank section 7.3
— only the PCA section required
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Curse of dimensionality

* Datasets typically high dimensional
— vision: 10* pixels, text: 10 words °

* the way we observe / record them o0 |

— true dimensionality often much lower
* a manifold (sheet) in a high-d space
* Example: handwritten digits
— 20 x 20 bitmap: {0,1}*% possible event:

* will never see most of these events
* actual digits: tiny fraction of events

— true dimensionality:
* possible variations of the pen-stroke
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Curse of dimensionality (2)

* Machine learning methods are statistical by nature
count observations in various regions of some space

use counts to construct the predictor f(x)

e.g. decision trees: p,/p.in {o=rain,w=strong,T7>28°}
text: #documents in {“hp” and “3d” and not “S” and ...)

* As dimensionality grows: fewer observations per region
— 1d: 3 regions, 2d: 32 regions, 1000d — hopeless ///

— statistics need repetition s, $ Constant # examples

* flip a coin once = head .

>

* P(head) = 100%?
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Dimensionality reduction

* Goal: represent instances with fewer variables
— try to preserve as much structure in the data as possible
— discriminative: only structure that affects class separability

* Feature selection
— pick a subset of the original dimensions X; X, X; ... X, X,
— discriminative: pick good class “predictors” (e.g. gain)

* Feature extraction
— construct a new set of dimensions £/ E, ...

N

E. = f(X,..X,)
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Dealing with high dimensionality

Use domain knowledge
— feature engineering: SIFT, MFCC

Make assumption about dimensions
— independence: count along

each dimension separately

— smoothness: propagate class
counts to neighboring regions °

o A I/ a
— symmetry: e.g. invariance to
order of dimensions: x1 <& x2 * x, § Constant # examples
. . . \ b a["A
Reduce the dimensionality of the data .
a
— create a new set of dimensions (variables) o 4
on A
®e

Constant # examples

/H :

Constant # examples

— [N
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Principal Components Analysis

Defines a set of principal components

— 15t direction of the greatest variability in the data

— 2nd: perpendicular to 1%, greatest variability of what’s left
— ...and so on until d (original dimensionality)

First m components become m new dimensions
— change coordinates of every data point to these dimensions

PC,

»
.

‘ . pc?
5%
et

' @

X

X3
X,
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PC, component

'°L?' 3 =

PC, component




Why greatest variability?

* Example: reduce 2-dimensional data to 1-d

X,

— {x,%,} = e (along new axis E)
* Pick E to maximize variability > /

* Reduces cases when two A ,
points are close in e-space N X,
but very far in (x,y)-space '

* Minimizes distances 4/) )
between original points !
and their projections
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Direction of greatest variability

* Select dimension e which maximizes the variance

. . X
* Points x “projected” onto vector e: >

e Variance of 1 n

n d ? 1 d 2 ~ : T
- Z (JZ:. Xi€;~ “J = Z [Z x,.]e_,) ,xe

projections: 77 i1 s

* Maximize variance L. li[ix ) T%[(i&)q)
— want unit length: | |e| |=1 niZ\=7 il

— add Lagrange multiplier IL 2 N[
o= Exijej
de, n

i=1\ j=I

]xia -2%e, =0

d d n
Ecov(a,j)ej =Ae, fora=1..d <j 0 =2Eej(%2xmxij)—2)\,ea
j=1 i=1

j=1
2e = Ae = e mustbe an eigenvector covariance
nko
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d
x,=x'e= th_e‘,

Principal components

e e ©

* Compute covariance matrix 2 s = ®
1
— covariance of dimensions x, and x,: {\e1

* do x, and x, tend to increase together?

* or does x, decrease as x, increases? X, X
— covariance: measure of variability x| 2.0 _O.B_L L
x3(0.8) (0.6 vartx) = 2~ 1)
l i=1
I
cov(x,x;) = VZ(YLI ~H Ix:,, - l‘:]
* Find the basis of 2

e, e

— find vectors e, which aren’t turned by =~ A (0.26\‘ x£0.4 -0.9}

* Ze =\ e;: eigenvalue / eigenvector A, 242) Y09 -04
— 15t PC: “longest” e (has largest A;), 2" PC: next longest, ...
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Projecting to new dimensions

* Got a set of principal componentse; ... e4
— orthogonal, unit length ‘
— corresponding eigenvalues A, ... Ay: Zd;ﬂ = trace (2) = Z‘; cov( X, X )
— fraction of variation explained | ‘

il 0.9
by first m principal components = ' <1
* typical threshold values: 0.9 or 0.95 > A
* e, ..e, are new dimension vectors 0
* Change coordinates: x; 4 =2 x'; , X, )
. . . =S

— subtract mean from old dimensions -
— dot product each dimension with e;...e,, | *n D | R

EEE
i
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3. compute covariance matrix

PCA in a nutshell

1. correlated hi-d data 2. center the points 2.0 cov(h,u)=~ Zhu
(“urefu” means “height” in Swahili) 0.8 0 6
® u
PN ®
— 4. eigenvectors + elgenvalues
-S- s ° ¢ {2.0 o.aJ [ej -\ [ej
0.8 0.6 L& “le

IR IR
3

2.0 08 ||f, f,
s oellel =L
0.8 0.6 fy

eig(cov(data))

g

5. pick m<d eigenvectors

) . w. highest eigenvalues
6. project data points to u

those eigenvectors ,""

@ e @ e

o
v

¢ g want dimension of

height [inches] highest variance

7. uncorrelated low-d data

Copyright © 2011 Victor Lavrenko ®

Eigen Faces: Projection

* Project new face to
space of eigen-faces

* Represent vector as
a linear combination
of principal components -

* How many do we need? ',
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PCA example: Eigen Faces

input: dataset of N face images

can visualize
eigenvectors:
m “aspects”

* Face similarity
— in the reduced space
— insensitive to lighting

. PrOJectlng new “faces”
— everything is a face

face: K x K bitmap of pixels ~ _ “unfold” each bitmap to
5 H K2-dimensional vector

arrange in a matrix
each face = column

Kz x N

&

KZxm

“fold” into a K x K bitmap

set of m eigenvectors
|| each is K2-dimensional

:
2

new face (not in training)

projected to eigenfaces

.
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PCA example: Topics in Text PCA: practical issues

, o * Covariance extremely sensitive to large values
* Can run variants of PCA on news, scientific papers ] ] )
— multiply some dimension by 1000

H H o H ”
* Eigenvectors can be interpreted as “topics . dominates covariance
— groups of related words G525 | 1 exactrature of || REsSarchersatine |2 G * becomes a principal component
{«" ” . : z:::mf:tl black hole formation g;:g[ﬁgxzchool of 1 :::m::il H H H H H
— “themes” of a collection [ ii%s’ | hasbeen mystiting || oo oooroorey |- iasory — normalize each dimension to zero mean and unit variance:

physicists for the...

another breakthrough
in the sequencing of

X' =(x—mean) / st.dev

* PCA assumes underlying subspace is linear
— 1d: straight line "

Clinical Trial : Stem

— drug 00672 cells 0.0818 _' s
~12k articles . 0.0375| |patents 00493 stem 00478 sequences 0.0493 milzor 00556 2d: ﬂat sheet
from ¢ 00279 |dues 00444 human 00421 genome 0.033 ago 0.045
“Science” ' 00233| |chcal - 9OME | | el pocond i s o || o — transform to handle
e e— & 00232 reatment 0028 gene 0028 euencmg ) 017 age 00 .
l damer  0.0214| [l 00277 | [seme 00185 | | map ) your 0,024 non-linear spaces
00137| |therapy ( clonng 00169 geues 0.0122 record 00238 .
E> ok 00131 [mal ' 00164 I:]ﬂ:fn 0 n:"-’. chromosome 0.0119 wl-;i 0 fj:33 (man|f0|d5)
Kt 00105| |dscase 00157 blood 00113 regions 00118 bilkon 0.0177
‘:n-. + 001 medical 000957| | embryos 00111 human 001 hustory 0.0148 . n“w, 70
PCA and classification Linear Discriminant Analysis
* PCA is unsupervised * LDA: pick a new dimension that gives:
— maximizes overall variance of the data along — maximum separation between means of projected classes
a small set of directions — minimum variance within each projected class
. y
does not know anything * Solution: eigenvectors based on between-class and
about class labels _ . .
R within-class covariance matrices
— can pick direction ¥
. —H
that makes it hard y e S
to separate classes
* Discriminative approach i
— look for a dimension 01\ e O R e
that makes it easy to X ORI
separate classes x
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PCA vs. LDA

* LDA not always good for classification
— assumes classes are unimodal Gaussians
— fails when discriminatory information is not in the mean,
but in the variance of the data

* PCA may give a more discriminating projection
\

y

Summary

True dimensionality << observed dimensionality
High dimensionality =» sparse, unstable estimates
Dealing with high dimensionality:
— use domain knowledge
— make an assumption: independence / smoothness / symmetry
— dimensionality reduction: feature selection / feature extraction
Principal Components Analysis (PCA)
— picks dimensions that maximize variability
e eigenvectors of the covariance matrix
— examples: Eigen Faces, Topics in Text
— variant for classification: Linear Discriminant Analysis
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Dimensionality reduction

* Pros

— reflects our intuitions about the data

— allows estimating probabilities in high-dimensional data
* no need to assume independence etc.

— dramatic reduction in size of data
* faster processing (as long as reduction is fast), smaller storage
* Cons
— too expensive for many applications (Twitter, web)
— disastrous for tasks with fine-grained classes

— understand assumptions behind the methods (linearity etc.)
* there may be better ways to deal with sparseness
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