Chapter 10
Identifying needs and establishing requirements
Overview

• The importance of requirements
• Different types of requirements
• Data gathering for requirements
• Task descriptions: Scenarios
 Use Cases
 Essential use cases
• Task analysis: HTA
What, how and why?

• What
 Two aims:
 1. Understand as much as possible about users, task, context
 2. Produce a stable set of requirements

• How:
 Data gathering activities
 Data analysis activities
 Expression as ‘requirements’
 All of this is iterative
What, how and why?

• Why:
 Requirements definition: the stage where failure occurs most commonly

Getting requirements right is crucial
Volere shell

Requirements:
- Requirement #: 75
- Requirement Type: 9
- Event/use case #: 6

Description: The product shall issue an alert if a weather station fails to transmit readings.

Rationale: Failure to transmit readings might indicate that the weather station is faulty and needs maintenance, and that the data used to predict freezing roads may be incomplete.

Source: Road Engineers
Fit Criterion: For each weather station the product shall communicate to the user when the recorded number of each type of reading per hour is not within the manufacturer’s specified range of the expected number of readings per hour.

Customer Satisfaction: 3
Customer Dissatisfaction: 5
Dependencies: None
Conflicts: None
Supporting Materials: Specification of Rosa Weather Station
History: Raised by GBS, 28 July 99
Volere requirements template

<table>
<thead>
<tr>
<th>PROJECT DRIVERS</th>
<th>13. Operational and Environmental Requirements</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. The Purpose of the Product</td>
<td>14. Maintainability and Support Requirements</td>
</tr>
<tr>
<td>2. The Stakeholders</td>
<td>15. Security Requirements</td>
</tr>
<tr>
<td>PROJECT CONSTRAINTS</td>
<td>16. Cultural and Political Requirements</td>
</tr>
<tr>
<td>3. Mandated Constraints</td>
<td>17. Legal Requirements</td>
</tr>
<tr>
<td>4. Naming Conventions and Definitions</td>
<td></td>
</tr>
<tr>
<td>5. Relevant Facts and Assumptions</td>
<td></td>
</tr>
<tr>
<td>FUNCTIONAL REQUIREMENTS</td>
<td></td>
</tr>
<tr>
<td>6. The Scope of the Work</td>
<td>18. Open Issues</td>
</tr>
<tr>
<td>8. The Scope of the Product</td>
<td>20. New Problems</td>
</tr>
<tr>
<td>9. Functional and Data Requirements</td>
<td>21. Tasks</td>
</tr>
<tr>
<td>NON-FUNCTIONAL REQUIREMENTS</td>
<td>22. Migration to the New Product</td>
</tr>
<tr>
<td>10. Look and Feel Requirements</td>
<td>23. Risks</td>
</tr>
<tr>
<td>11. Usability and Humanity Requirements</td>
<td>24. Costs</td>
</tr>
<tr>
<td></td>
<td>26. Waiting Room</td>
</tr>
<tr>
<td></td>
<td>27. Ideas for Solutions</td>
</tr>
</tbody>
</table>
Establishing requirements

• What do users want? What do users ‘need’? Requirements need clarification, refinement, completion, re-scoping
 Input: requirements document (maybe)
 Output: stable requirements

• Why ‘establish’?
 Requirements arise from understanding users’ needs
 Requirements can be justified & related to data
Different kinds of requirements

- **Functional:**
 - What the system should do
 - Historically the main focus of requirements activities
- *(Non-functional: memory size, response time...)*
- **Data:**
 - What kinds of data need to be stored?
 - How will they be stored (e.g. database)?
Different kinds of requirements

Environment or context of use:

— physical: dusty? noisy? vibration? light? heat? humidity? (e.g. OMS insects, ATM)
— social: sharing of files, of displays, in paper, across great distances, work individually, privacy for clients
— organisational: hierarchy, IT department’s attitude and remit, user support, communications structure and infrastructure, availability of training
An extreme example

- Mounting Plate
- Thumb Button (Right Hand)
- Thumb Button (Left Hand)
- Locking Screws (Piston)
- Index Finger (Right Hand)
- Index Finger (Left Hand)
- Hose Stem
- Virtual Display
- Kord® Pad

100 mm

180 mm

www.id-book.com 10 ©2011
Different kinds of requirements

• Users: Who are they?
 — Characteristics: ability, background, attitude to computers
 — System use: novice, expert, casual, frequent
 — Novice: step-by-step (prompted), constrained, clear information
 — Expert: flexibility, access/power
 — Frequent: short cuts
 — Casual/infrequent: clear instructions, e.g. menu paths
What are the users’ capabilities?

Humans vary in many dimensions:

— size of hands may affect the size and positioning of input buttons
— motor abilities may affect the suitability of certain input and output devices
— height if designing a physical kiosk
— strength - a child’s toy requires little strength to operate, but greater strength to change batteries
— disabilities (e.g. sight, hearing, dexterity)
Kinds of requirements

What factors (environmental, user, usability) would affect the following systems?

• Self-service filling and payment system for a petrol (gas) station

• On-board ship data analysis system for geologists searching for oil

• Fashion clothes website
Personas

• Capture user characteristics
• Not real people, but synthesised from real user characteristics
• Should not be idealised
• Bring them to life with a name, characteristics, goals, personal background
• Develop multiple personas
Personas

Ginnie

Receives private tutoring in Maths and English as these are not her strong subjects. Enjoys playing for the school’s 2nd teams for netball and Lacrosse and is good at art.

She loves recording her favourite shows ER and Sun Valley High on Sky+ and spends some of her time on her laptop that Daddy bought her watching videos on YouTube, downloading music, keeping up to date with her friends on Facebook and chatting via MS IM to her cousin who is at University in Leeds.

She loves Ugg boots and Abercrombie & Fitch and uses the Internet to shop and find the cheapest prices.

“*I want to easily hook up with my friends whilst watching TV*”
Data gathering for requirements

Interviews:
- Props, e.g. sample scenarios of use, prototypes, can be used in interviews
- Good for exploring issues
- But are time consuming and may be infeasible to visit everyone

Focus groups:
- Group interviews
- Good at gaining a consensus view and/or highlighting areas of conflict
- But can be dominated by individuals
Data gathering for requirements

Questionnaires:
- Often used in conjunction with other techniques
- Can give quantitative or qualitative data
- Good for answering specific questions from a large, dispersed group of people

Researching similar products:
- Good for prompting requirements
Data gathering for requirements

Direct observation:

— Gain insights into stakeholders’ tasks
— Good for understanding the nature and context of the tasks
— But, it requires time and commitment from a member of the design team, and it can result in a huge amount of data

Indirect observation:

— Not often used in requirements activity
— Good for logging current tasks
Data gathering for requirements

Studying documentation:

— Procedures and rules are often written down in manuals
— Good source of data about the steps involved in an activity, and any regulations governing a task
— Not to be used in isolation
— Good for understanding legislation, and getting background information
— No stakeholder time, which is a limiting factor on the other techniques
Some examples

Diary and interview

Cultural probes
Contextual Inquiry

• An approach to ethnographic study where user is expert, designer is apprentice
• A form of interview, but
 — at users’ workplace (workstation)
 — 2 to 3 hours long
• Four main principles:
 — Context: see workplace & what happens
 — Partnership: user and developer collaborate
 — Interpretation: observations interpreted by user and developer together
 — Focus: project focus to understand what to look for
Problems with data gathering (1)

- Identifying and involving stakeholders: users, managers, developers, customer reps?, union reps?, shareholders?
- Involving stakeholders: workshops, interviews, workplace studies, co-opt stakeholders onto the development team
- ‘Real’ users, not managers: traditionally a problem in software engineering, but better now
Problems with data gathering (2)

- Requirements management: version control, ownership
- Communication between parties:
 - within development team
 - with customer/user
 - between users... different parts of an organisation use different terminology
- Domain knowledge distributed and implicit:
 - difficult to dig up and understand
 - knowledge articulation: how do you walk?
- Availability of key people
Problems with data gathering (3)

• Political problems within the organisation

• Dominance of certain stakeholders

• Economic and business environment changes

• Balancing functional and usability demands
Some basic guidelines

• Focus on identifying the stakeholders’ needs
• Involve all the stakeholder groups
• Involve more than one representative from each stakeholder group
• Use a combination of data gathering techniques
Some basic guidelines

- Support the process with props such as prototypes and task descriptions
- Run a pilot session
- You will need to compromise on the data you collect and the analysis to be done, but before you can make sensible compromises, you need to know what you’d really like
- Consider carefully how to record the data
Data interpretation and analysis

• Start soon after data gathering session

• Initial interpretation before deeper analysis

• Different approaches emphasize different elements e.g. class diagrams for object-oriented systems, entity-relationship diagrams for data intensive systems
Task descriptions

- Scenarios
 - an informal narrative story, simple, ‘natural’, personal, not generalisable

- Use cases
 - assume interaction with a system
 - assume detailed understanding of the interaction

- Essential use cases
 - abstract away from the details
 - does not have the same assumptions as use cases
Scenario for travel organizer

“The Thomson family enjoy outdoor activities and want to try their hand at sailing this year. There are four family members: Sky (10 years old), Eamonn (15 years old), Claire (35), and Will (40). One evening after dinner they decide to start exploring the possibilities. They all gather around the travel organizer and enter their initial set of requirements – a sailing trip for four novices in the Mediterranean. The console is designed so that all members of the family can interact easily and comfortably with it. The system’s initial suggestion is a flotilla, where several crews (with various levels of experience) sail together on separate boats. Sky and Eamonn aren’t very happy at the idea of going on vacation with a group of other people, even though the Thomsons would have their own boat. The travel organizer shows them descriptions of flotillas from other children their ages and they are all very positive, so eventually, everyone agrees to explore flotilla opportunities. Will confirms this recommendation and asks for detailed options. As it’s getting late, he asks for the details to be printed so everyone can consider them tomorrow. The travel organizer prints out a summary of the different options available.”
Use case for travel organizer

1. The system displays options for investigating visa and vaccination requirements.
2. The user chooses the option to find out about visa requirements.
3. The system prompts user for the name of the destination country.
4. The user enters the country’s name.
5. The system checks that the country is valid.
6. The system prompts the user for her nationality.
7. The user enters her nationality.
8. The system checks the visa requirements of the entered country for a passport holder of her nationality.
9. The system displays the visa requirements.
10. The system displays the option to print out the visa requirements.
Alternative courses for travel organizer

Some alternative courses:

6. If the country name is invalid:
6.1 The system displays an error message.
6.2 The system returns to step 3.

8. If the nationality is invalid:
8.1 The system displays an error message.
8.2 The system returns to step 6.

9. If no information about visa requirements is found:
9.1 The system displays a suitable message.
9.2 The system returns to step 1.
Example use case diagram for travel organizer

- Travel agent
- Traveler

- Update travel details
- Identify potential vacations
- Retrieve visa requirements
- Retrieve vaccination requirements
Example essential use case for travel organizer

retrieveVisa

USER INTENTION
find visa requirements
supply required information
obtain copy of visa info
choose suitable format

SYSTEM RESPONSIBILITY
request destination and nationality
obtain appropriate visa info
offer info in different formats
provide info in chosen format
Task analysis

- Task descriptions are often used to envision new systems or devices
- Task analysis is used mainly to investigate an existing situation
- It is important not to focus on superficial activities
 - What are people trying to achieve?
 - Why are they trying to achieve it?
 - How are they going about it?
- Many techniques, the most popular is Hierarchical Task Analysis (HTA)
Hierarchical Task Analysis

• Involves breaking a task down into subtasks, then sub-sub-tasks and so on. These are grouped as plans which specify how the tasks might be performed in practice.

• HTA focuses on physical and observable actions, and includes looking at actions not related to software or an interaction device.

• Start with a user goal which is examined and the main tasks for achieving it are identified.

• Tasks are sub-divided into sub-tasks.
Example Hierarchical Task Analysis

0. In order to buy a DVD
1. locate DVD
2. add DVD to shopping basket
3. enter payment details
4. complete address
5. confirm order

plan 0: If regular user do 1-2-5.
If new user do 1-2-3-4-5.
Example Hierarchical Task Analysis (graphical)

- **Plan 0:**
 - if regular user do 1-2-5.
 - if new user do 1-2-3-4-5.

- **Tasks:**
 1. Locate
 2. Add DVD to shopping basket
 3. Enter payment details
 4. Complete address
 5. Confirm order
Summary

• Getting requirements right is crucial

• There are different kinds of requirement, each is significant for interaction design

• The most commonly-used techniques for data gathering are: questionnaires, interviews, focus groups, direct observation, studying documentation and researching similar products

• Scenarios, use cases and essential use cases can be used to articulate existing and envisioned work practices.

• Task analysis techniques such as HTA help to investigate existing systems and practices.