Interaction Design Case Study - 2

Tweeting Bottles and other stories

Speckled Computing

Outcomes of Case Study - 1

Literal and Stylised Representations

- Focal and Peripheral attention
- Detailed and Abstracted representations
- Intended audience: technical / non-technical

Outcomes of Case Study - 2

- Primary site of interaction: Virtual or Physical world
- Nature of Interaction: explicit or oblivious to the user
- Personal v/s Social v/s Public

I/O devices

×

1.1

Integration of Computation, Communication and Control to provide time-bounded decisions and actions

Tweeting Bottles

- Category : Consumer
- Requirements: Recognise predefined actions such as pouring, squeezing and shaking when using consumer products
- Users: Consumer behaviour analysts; Enhance user experience
- Sensors: 3-D Accelerometer
- Actuators: None
- Data Analysis: Clustering techniques to identify pouring, shaking and squeezing.
- Wireless protocol: 2.4GHz Bluetooth 4.0 radio

Sensing Daily Rituals

Speckled Computing

How do consumers use FMCG products?

Current methods

- Interviews
- Diaries
- Questionnaires
- Advantages
 - Low-tech

Disadvantages

- Error-prone, Inaccurate, Intrusive, Overhead, Unreliable (noisy data)
- Time-consuming what's in it for the consumer?

Sensors recognise usage of FMCG products

No change in consumer behaviour

- Customer oblivious to data collection
- Data transmitted automatically to server

Data Analytics extracts actionable information

- Times and Frequency of usage
- Usage patterns (diurnal, monthly, annual)

Make informed Business and Design decisions

Speckled Computing

ack	Graph
aon	orupn

CONNECTED NanoSpeck2 CF:04:D4:B5:93:8F

Event No: 1 Action Type: Other 2015 08 27 15:01:45

Event No: 2 Action Type: Pour 2015 08 27 15:01:57

Event No: 3 Action Type: Shake 2015 08 27 15:36:17

Event No: 4 Action Type: Shake 2015 08 27 16:18:48

Event No: 5 Action Type: Other 2015 08 27 17:32:21

Event No: 6 Action Type: Other 2015 08 27 17:34:17

Event No: 7 Action Type: Squeeze 2015 08 31 10:36:07

Event No: 8 Action Type: Pour 2015 08 31 10:36:24

Event No: 9 Action Type: Shake 2015 08 31 10:36:35

Event No: 10 Action Type: Pour 2015 08 31 10:39:47

Event No: 11 Action Type: Other 2015 08 31 11:41:43

Event No: 12 Action Type: Shake 2015 08 31 11:43:28

Event No: 13 Action Type: Squeeze 2015 08 31 11:49:27

÷

 \frown

IJ

Events

- Pouring
- o Squeezing
- o Shaking

Phone App

- Recognises events
- o Timestamp
- Transmits to server

X y y g_20150727001824 - Microsoft Excel							Chart Tools					
F	ile Ho	me Insert	Page Layout	t Formu	las Data	Review	View	Design	Layout	Format		
ſ	*	Calibri (Body)	· 10 · ,	A • ▲ =	= = è	»- I	General		•	5		
Pa	ste 🦪	BI <u>U</u> -	- 🗠 - 🗠 -	• <u>A</u> • ≡				% * .00	0.00 Con 0.⇒.0 Form	ditional Fo atting * as T	rmat Cell able - Styles	- 1
Clip	board 🕞	F	ont	Es .	Alignme	ent	G N	lumber	- Gi	Style	S	
グラフ3 ▼ (● ƒ_★												
	А	В	С	D	E	F	G	Н	I	J	K	
1	name	time_stamp	accelz	ActionNu	ActionLen	ActionTyp	JC	MA	TV	JL	RG	
2	SHAKE	20150724150	851.csv									
3	RespeckLF	2.01507E+13	1.001221	1	50	0	0.119995	-2	1.527656	5.999756	3.999756	
4	RespeckLF	2.01507E+13	1.002441	2	75	0	0.079997	-1.57623	0.965653	5.999755	3.999756	
5	RespeckLF	2.01507E+13	1.001221	3	25	0	0.23999	-2	2.594624	5.999757	3.999756	
6	RespeckLF	2.01507E+13	1.001221	4	50	0	0.119995	-2	1.44894	5.999757	3.999756	
7	RespeckLF	2.01507E+13	1.002197	5	50	0	0.119995	-2	1.452802	5.999757	3.999756	
8	RespeckLF	2.01507E+13	1.000488	6	50	0	0.119995	-1.17782	0.832689	5.999755	3.361182	

- MA = min. avg. (avg. of 10 min. z-axis acclerometer values)
- JC = jerk count
- Length = number of z-axis accelerometer values in the window

Integration of Computation, Communication and Control to provide time-bounded decisions and actions

Arvind, D.K., Bates, C.A., 2008 ``The Speckled Golfer", In 3rd Int. Conf. on Body Area Networks, March 13 - 17, 2008, Tempe AZ, USA, IEEE Press.

- on the golf course, and not in the studio
- Accurate, infrastructure-less, portable, strap-on
- Real-time feedback either sonic or visual (on a PDA)
- Fully wireless, and full body (if required)
- Score the "goodness" of a swing based on existing body of research on the biomechanics of golf swing
- Estimate the "distance" of a swing from the personal best

Golf Swing Statistics from any place

Analysis of Motor Control Skills

• Swing of the club

Impact of the clubhead with the ball

Flight of the ball towards the target

- Modelled as a double pendulum
 - Arms of the golfer act as one pendulum connected to the club
 - Club acts as another pendulum
- Equation of motion for a double pendulum using Newton's Laws

Model of the Swing

- Arms of the golfer swing about an axis that moves during the downswing
- Club swings about a moving axis near the wrists of the golfer
- Two rigid rods Arm (A) and the Club (C)
- Rod A: point halfway b/w shoulder to wrist

Biomechanics of the Swing

Physics of Golf by T.P. Jorgensen, Springer, p9

- *a*: hor. accl. at O
- *Gamma*: angle of rod A with the downward dir. at the start of the downswing
- *Beta*: wrist-cock angle
- *Theta*: downward angle of rod A
- *Alpha*: downward swing angle
- *Alpha dot*: angular vel. of rod A
- *Alpha double dot*: angular accl. of rod A

"Swinging in the Plane" Rule

- **vstart** vector pointing down the shaft at the start of swing
- **vend** shaft vector at the end of the swing
- **n** = **vstart x vend** and is normal to the swing plane
- v' general shaft vector during the swing which does not lie in the plane
- v correct shaft vector which does lie in the plane defined by **n**
- α angle between **v**' and **n**, where

 $\cos(\alpha) = v'.n / |v'||n|$

"Swinging in the Plane" Rule

- $\cos(\alpha) = \mathbf{v} \cdot \mathbf{n} / |\mathbf{v}'||\mathbf{n}|, \alpha$ angle between **v**' and **n**
- v' is obtained by taking the local down-shaft vector in the club sensor's co-ordinate system and rotating it by the current orientation of the device, to give a vector that points down the shaft in the world coordinate system
- vworld = q* x vlocal x q

q – quaternion specifying orientation of the device; **q*** is the conjugate; "**vworld**, vector pointing down the shaft in the world co-ordinate system, and **vlocal**, in the local co-ordinate frame; **x** is the quaternion product

The rule returns $1 - \cos(\alpha)$ as a score, which is 1 for a swing perfectly within the plane, and 0 when perpendicular to the swing plane

"Head Movement" Rule

- Change in the orientation of the head about each axis between consecutive snapshots of the golf swing
 - **Orient** speck attached to the cap the root for the body model, and any head movement is recorded relative to the motion of the body
- For each snapshot calculate the world direction vector that points along each axis of the headmounted device, and compare it to the previous value

Score = $(Abs(cos(\delta x)) + Abs(cos(\delta y)) + Abs(cos(\delta z))) /3$, δx , δy , δz are changes in alignment along the x, y and z axis

Body model on the Mobile

Top Row: Distance of swing from ideal plane *Middle Row:* Sine of the angle at the wrist, elbow and shoulder *Bottom Row:* Angle away from the plane and the 3 joint angles

Centre for Speckled Computing

Distributed Posture Tracking

A comparative study of surgical skills assessment in a physical laparoscopy simulator using wireless inertial sensors

R L Evans¹, R W Partridge² and D K Arvind¹ ¹School of Informatics, University of Edinburgh ² Royal Hospital for Sick Children, NHS Lothian Edinburgh, Scotland

In Proc. Wireless Health 2014, Bethesda MA,USA, Nov. 2014, ACM Press

Overview

Laparoscopy Surgery Training

- Medical expertise combined with manual dexterity in both hands and spatial awareness
- Training on real patients under supervision is expensive and time-consuming
- Surgical Simulators are a safe environment to practise key skills and provide automated measure of performance and feedback on improvements

• An improved Use-case model

- Take-home surgical simulator (eosim.com)
- Surgeons practise basic skills in their own time
- Inertial sensors (Orient specks) attached to the instruments provide feedback on performance of standard set of key skills
- Keep track of individual progress and comparison with cohort of trainees

Overview

Laparoscopy Surgery Training

- Medical expertise combined with manual dexterity in both hands and spatial awareness
- Training on real patients under supervision is expensive and time-consuming
- Surgical Simulators are a safe environment to practise key skills and provide automated measure of performance and feedback on improvements

• An improved Use-case model

- Take-home surgical simulator (eosim.com)
- Surgeons practise basic skills in their own time
- Inertial sensors (Orient specks) attached to the instruments provide feedback on performance of standard set of key skills
- Keep track of individual progress and comparison with cohort of trainees

.....

Combined outputs from a leave-one-out cross-validation of the linear regression model.

Average Acceleration (α), Total Duration (*T*), Motion Smoothness (*S*), Angular Distance (θ), Ambidexterity (*A*).

Centre for Speckled Computing