Key points:

- Interaction Design
- Task Analysis
 - Motivation: need to understand the task to be able to design for good interaction
 - Define the scope and observe or generate representative interaction exemplars
 - Organise/formalise the description
 - Confirm validity
 - Use at all stages of design process
- + Scenarios
- + Prototyping
Interaction Design

Rogers, Sharp & Preece

A Process for Creating Digital Interactive Systems for people to Interact and Communicate during their Everyday and Working Activities

Four Main Activities
1. Requirements
2. Alternatives
3. Prototyping
4. Evaluating
Interaction Design Cycle

1. Establish Requirements
2. Designing Alternatives
3. Prototyping
4. Evaluating

Rogers, Sharp & Preece
User Centred Approach

- Early focus on user and tasks
- Empirical Measurement
- Iterative Design

- Gould and Lewis 1985
- “The state of User-Centered Design Practice” Mao et al, 2005
The Design Process

- Divergence and Convergence
- Exploration and Implementation
Interaction Design Cycle

- **what is wanted**
 - interviews
 - ethnography
- **what is there vs. what is wanted**
- **analysis**
 - scenarios
 - task analysis
- **design**
 - guidelines
 - principles
- **implement and deploy**
 - precise specification
 - architectures
 - documentation
 - help
- **evaluate**
 - heuristics
- **prototype**

[Dix et al, p.195]
Task Analysis Motivation

Used to analyse an existing system - Includes non digital task as well

Task analysis has a potential role at different stages of design:

- Supporting requirements analysis:
 - Functional specification of what system will do
 - Data requirements and data flow
 - Usability requirements

- Evaluating prototypes

- Performance testing

- User training

[Dix et al, p.195]
A ‘task’ can be defined as the activities required to obtain a particular goal in a particular domain
- Could view as description of user’s procedural memory (or what should end up in their memory)

Note that many design guidelines (lecture one) are implicitly task specific:
- “Speak the user’s language” – so what is their language? What terms are used in the task domain, and how are they related?
- “Be consistent” – with which other systems? Is the new design replacing an existing system, and will procedures transfer?
- “Give appropriate feedback” – what is appropriate for this group of users executing this task? What information transfers to and from the user are necessary or desirable?
Stages of task analysis

- Defining purpose and scope
- Obtaining data
- Extracting activity lists

- Organising and describing task performance
 - Many methods: we will focus on just one (see Dix for alternatives)

- Confirming the validity of the description
 - If necessary, reiterating previous steps
Defining purpose and scope

- What stage(s) of the project need task analysis?
- What do you want to know and how are you going to use it?
- What is the scope?
 - A useful approach here is to identify the main components of the work system and the application domain.
 - Goals are desired future states of the application domain
 - The work system changes the application domain by doing tasks
Example of work system and task domain

Obtaining data

- Ideal: study real people doing real task in real context
 - E.g. video record and replay to get user commentary
 - If aim is to design new system, analysing existing systems helps
- Examine documentation, training programmes, etc. for descriptions of how to carry out tasks
- Interview stakeholders about the task (try to uncover real goals and procedural knowledge)
- Generate scenarios →
For a representative sample of tasks and users, produce detailed list describing the accomplishment of a goal ('interaction script').

- Each line is single main agent performing one main action that affects other agents or objects
- May want in form of dialogue, e.g. user and computer

Example:

<table>
<thead>
<tr>
<th>USER:</th>
<th>SYSTEM RESPONSE:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Clicks button labelled “Start”</td>
<td>2. Menu pops up</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>3. Clicks “shut down”</td>
<td>4. Greys screen and presents dialogue box describing shut down and offering “OK” “cancel” and “Help” options</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>5. Clicks “OK”</td>
<td>5. Screen blanks and “Please wait” message shown</td>
</tr>
<tr>
<td></td>
<td>6. Computer turns off</td>
</tr>
</tbody>
</table>
Aim is to reduce the volume of information in the activity lists:

- If possible, combine into one or a few more abstract descriptions (e.g. use cases)
- Represent alternatives and options as branches
- Decide if some user types/tasks should be excluded

Approach may be top-down (start from overall goal and subdivide the steps) or bottom up (start from example actions and organise into appropriate hierarchy)
Hierarchical Task Analysis

- Best known method is Hierarchical Task Analysis (HTA)
- Start from overall goal, e.g. clean the house
- Break down into numbered subgoals, e.g.
 0. clean the house
 1. get the vacuum cleaner out
 2. clean the rooms
 2.1 clean the hall
 2.2 clean the living rooms
 2.3 clean the bedrooms
 3. empty the dust bag
Hierarchical Task Analysis (HTA)

0. make a cup of tea
 plan 0.
 do 1
 at the same time, if the pot is full 2
 then 3 - 4
 after four or five minutes do 6

1. boil water
2. empty pot
3. put tea leaves in pot
4. pour in boiling water
5. wait 4 or 5 minutes
6. pour tea

plan 1.
1.1 - 1.2 - 1.3
when kettle boils 1.4

1.1. fill kettle
1.2. put kettle on hob
1.3. wait for kettle to boil
1.4. turn off gas
Refining the HTA: check and improve the decomposition

Some heuristics are:

- **Check for paired actions**: where is “turn on gas”?
- **Restructure**: generate task “make pot”
- **Balance**: is “pour tea” simpler than “make pot”?
- **Generalise**: make one cup . . . or more
- **Sub-operations should be mutually exclusive and collectively exhaustive**
- **Consider possible alternatives**
0. make cups of tea

plan 0.
do 1
at the same time, if the pot is full 2
then 3 – 4
after four or five minutes do 5

1. boil water
2. empty pot
3. make pot
4. wait 4 or 5 minutes
5. pour tea

Plan 5.
5.1 → 5.2 empty NO cups? for each guest 5.3

1.1 – 1.2 – 1.3 – 1.4
when kettle boils 1.5

3.1 – 3.2 – 3.3

5.1. put milk in cup
5.2. fill cup with tea
5.3. do sugar

3.1. warm pot
3.2. put tea leaves in pot
3.3. pour in boiling water

5.3.1. ask guest about sugar
5.3.2. add sugar to taste

1.1. fill kettle
1.2. put kettle on hob
1.3. turn on and light gas
1.4. wait for kettle to boil
1.5. turn off gas
Types of plan

- **sequence** 1.1 then 1.2 then 1.3
- **optional** if the pot is full 2
- **wait** when kettle boils, do 1.4
- **cycles** do 5.1 5.2 while there are still empty cups
- **parallel** do 1; at the same time ...
- **discretionary** do any of 5.1, 5.2, or 5.3 in any order

Most plans use several of these (i.e. mixtures).
Task decomposition

When is decomposition complete?

- When reach ‘actions’, i.e. task that user can execute without problem solving (but note this may differ for different users)
- Above ‘device specific’ implementation details (but note shape of task is often device dependent)
- Suggested heuristic is to stop when probability of error \((p)\) multiplied by cost of error \((c)\) is below threshold
Using the task analysis

From the task description:
- Identify ‘critical’ steps, e.g. high attention load, need special knowledge
- Find possible points of failure, e.g. easily missed steps

For design:
- consider alternative task allocations
- taxonomies suggest menu layout
- object/action lists suggest interface objects
Using the task analysis

For evaluation:
- Use task description to do walkthroughs with prototypes, checking for each step:
 - Is the user action motivated?
 - How will they know what to do?
 - How will they know they have done it?
- Example: part of proposed computer interface in catalog shop:

<table>
<thead>
<tr>
<th>Name</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Catalog #</td>
<td>Trigger Invoice</td>
</tr>
</tbody>
</table>

- ‘Enter name’ is not a standard step in the task of buying items for cash in a shop, but system needs some kind of identifier
- `Enter catalog number’ is motivated but error-prone: computer should
Issues

- There are many different tools; can be useful to try several complementary approaches

- Most methods still lack a ‘direct translation’ from the task analysis to the system design
 - Recent interest in relating task analysis methods to UML, i.e. taking a user rather than system focus in creating use-cases, activity and sequence diagrams, class diagrams etc.
 - See e.g. Nobrega et. al. (2005)
Scenarios

- A **scenario** is an informal narrative description of a specific interaction, usually with a real-world setting.

- Scenarios can:
 - be elaborated down to low-level interactions
 - suggest desirable constraints such as response time, error behaviour

- May make use of ** personas**, prototypical users
 - Based on composite/hypothetical user
 - Pose questions: “how would Betty react if. . . ”

- Non-essential details help things appear real, avoid designers falling into “if it was me” trap.
Camera Phone Example

Confident learner

Samantha Bell

“I’d love to keep in contact with my friends”

Sam is about to go abroad for her gap year, so her parents decided to get her a new camera, to make sure she’s able to record everything she gets up to.

She likes the camera as it looks so modern, and it’s able to do so much more than a lot of her friends’ cameras.

She loves being in contact with people all the time, and finds it’s a great way to kill time like when waiting for the bus. She uses a lot of the more advanced features – panoramic shots, online upload and

When she encounters a problem she ignores it most of the time - she’s not sure if she even got a manual with the camera. When she has trouble she can’t ignore she speaks to her friends, or goes into a camera store – she wants to be talked through the problem.

First time user

Female, 27 year old, single
Student
Sam prefers to learn how to things by trying things out by herself. She isn’t worried about ‘breaking’ anything. If she does need help she would prefer to not to refer to a manual but “do it herself”.

Needs

In order of preference:
1. To share pictures with her parents
2. To share her pictures with her friends
3. To share her pictures with people she meets whilst travelling

Ideal features

• Ability to take pictures
• Ability to upload images to personal site using 3G/Wifi
• Allowing others to access her pictures remotely
• Long battery life
• Ability to name and add comments to uploaded images
• Ability to create several albums, and upload pictures to each

Frustrations

• Lack of wireless/3G access
• Slow uploads
• Low battery life
• Need to be plugged in to upload images
• Slow shutter speed
• Want to be able to name/add comments to uploaded images
• Getting online is confusing
• Creating new albums

Key attributes

<table>
<thead>
<tr>
<th></th>
<th>Low</th>
<th>High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knowledge</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experience</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Help use</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Confidence</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Webcredible – user experience research & design

March 2010

25
Example Persona

Betty, the Warehouse Manager:

“Betty is 37 years old, She has been Warehouse Manager for five years and worked for Simpkins Brothers Engineering for twelve years. She didn’t go to university, but has studied in her evenings for a business diploma. She has two children aged 15 and 7 and does not like to work late. She did part of an introductory in–house computer course some years ago, but it was interrupted when she was promoted and could no longer afford
Example Scenario

Personal Movie Player: Bluetooth Download

“Brian would like to see the new film “Moments of Significance” and wants to invite Alison, but he knows she doesn’t like “arty” films. He decides to take a look at it to see if she would like it and so connects to one of the movie sharing networks. He uses his work machine as it has a higher bandwidth connection, but feels a bit guilty. He knows he will be getting an illegal copy of the film, but decides it is OK as he is intending to go
Scenarios

- Have become popular as a method in software design
 - See e.g. Carroll (2000)
- ‘Flexible and powerful’ because exploit human ability to envisage rich interactions with minimal information cues
- Sometimes described as an alternative to task analysis but:
 - Lacks comprehensiveness and structure
 - May conceal assumptions, make early commitment on design decisions that should be postponed
Prototypes

• The Creation of tangible manifestations of design ideas that users, designers and other stakeholders can interact with in a rapid and in an inexpensive way
• “Supposing is fine but Knowing is Better” Mark Twain
• “If you haven’t failed recently you are probably not being that innovative” Woody Allen
Wireframe Paper Prototyping

- Rapid
- Low Cost in Time and Money
- Low Risk - Easy to Correct
- Discover and Explore Quickly
- Makes Divergent Play Possible
- Make and Correct Mistakes Early
- Involver Users Early
Paper Prototyping - Post-it Notes
Physical Prototyping

Paper

Foam

Electronic Mockup
• Rapid Prototyping
Prototyping tools - Open Office

• Mockup using presentation tool and hyperlinks with no programming
• Play Presentation on the device Phone/Tablet as if it was an app
Summary

• Interaction Design - Iterative User Centered
• Design Tools
 – Task Analysis
 – Scenarios
 – Prototyping