
Human Communication 1
Lecture 8

1

A language-controlled
calculator

• Natural language is very complex

• Thus, building a natural language model is very difficult

• One way of dealing with this is to restrict the language
domain

• We will look at a language-controlled calculator

• structure and grammar rules (syntax)

• how to represent meaning (semantics)

• how to answer questions

2

A language-controlled
calculator

• Task: building a language-controlled
calculator

• English-language input and output

• Two problems (sub-tasks)

• syntax and semantics of numbers

• syntax and semantics of commands and
questions

3

User: How much is three times four?

Program: Twelve

User: Multiply three by three.

Program: OK

User: Add to that four times four.

Program: OK

User: What's the square root of that?

Program: Five

User: Add three hundred and eighty five to fifteen thousand nine hundred
eighteen.

Program: OK

User: How much is that?

Program: Sixteen thousand three hundred and three

User: What's twenty five divided into one hundred and twenty thousand?

Program: Forty eight hundred

4

Syntax & Semantics of
numbers

Num! →! zero! 0

Num! →! To99! To99

Num! →! To999! To999

To99! →! Digit! Digit

To99! →! Teen! Teen

To99! →! Tens! Tens

To99! →! Tens Digit! Tens + Digit

Digit! →! one ! 1
⋮

Digit! →! nine! 9

Teen! →! ten! 10

Teen! →! eleven! 11
⋮

Teen! →! nineteen! 19

Tens! →! twenty! 20
⋮

Tens! →! ninety! 90

To999! →! Hun! Hun

To999! →! Hun To99! Hun + To99

To999! →! Hun and To99! Hun + To99

Hun! →! a hundred! 100

Hun! →! Digit hundred! Digit * 100

5

What we did

• Define rewrite rules for numbers < 1000

• Add expressions to each to give meaning to
structure built by rule

• Meaning of structure built from meaning of
substructures

• Non-terminal in meaning stands for
meaning of subtree

6

Parsing & determining
meaning

“three hundred and forty two”

Parse bottom-up; add meaning [] as we go

Rules to use:

Digit! →! three! [3]

Tens! →! forty! [40]

Digit! →! two! [2]

7

three hundred and forty two

‣Digit!→! three! [3]

Digit[3] hundred and forty two

‣Tens! →! forty! [40]

Digit[3] hundred and Tens[40] two

‣Digit!→! two! [2]

Digit[3] hundred and Tens[40] Digit[2]

8

Digit[3] hundred and Tens[40] Digit[2]

‣Hun! →! Digit hundred! [Digit * 100]

Hun[3 * 100] and Tens[40] Digit[2]

‣To99! →! Tens Digit! [Tens + Digit]

Hun[3 * 100] and To99[40 + 2]

‣To999! →! Hun and To99! [Hun + To99]

To999[[3 * 100] + [40 + 2]]

‣Num! →! To999! [To999]

Num[342]

So, “three hundred and forty two” is a Num with the meaning [342]

9

Syntax & semantics of
the calculator

• The calculator dialogues consist of two kinds of input

• questions

• commands.

• S → Imp! [!]! ! save the value of Imp

• S → Q! [?]! ! print meaning of Q and save it

• This gives the basic semantics for the system

• the value of every computation is saved

• in the case of questions, all of the form “How much is …”
or something equivalent we print out the result as well.

10

Syntax & semantics of
questions

• Syntax of questions is simple

• Q → how much is NP! [NP]

• Q → what is NP! [NP]

• For example

• “how much is seven added to six?”

• “what is four divided by two?”

11

Syntax & semantics of
commands

Commands like “Multiply three by two” all involve prepositions,
separated by a NP from the verb, but determined by it:

Imp!→ !multiply NP by NP! ! [NP1 * NP2]

Imp!→ !multiply NP by NP! ! [NP1 * NP2]

Imp!→ ! divide NP by NP! ! [NP1 / NP2]

Imp!→! divide NP into NP! ! [NP2 / NP1]

Imp!→ ! add NP to NP! ! [NP1 + NP2]

Imp!→! add NP and NP! ! [NP1 + NP2]

Imp!→! subtract NP from NP! ! [NP2 – NP1]

Note: for dividing, meaning depends on preposition.

12

Simple noun phrases

NP → that!! ! ! ! ! ! the saved meaning of
! ! ! ! ! ! ! ! ! ! previous computation

NP → the result {of that}!! the saved meaning of
! ! ! ! ! ! ! ! ! ! previous computation

NP → Num! ! ! ! ! ! Num

13

Complex NPs – “three
added to four”

This class of NPs requires rules of the general form

Imp → V NP Prep NP, e.g. “add seven to three”

NP → NP V-ed Prep NP, e.g. “seven added to three”

Both have the same meaning; the NP rules are:

NP → NP multiplied by NP ! ! [NP1 * NP2]

NP → NP divided by NP !! ! [NP1 / NP2]

NP → NP divided into NP ! ! [NP2 / NP1]

NP → NP added to NP ! ! ! [NP1 + NP2]

NP → NP subtracted from NP! [NP2 – NP1]

The Imp rules are analogous
14

Complex NPs – “the result
of dividing three into four”

This class of NPs requires rules of the general form

NP! →! the result of PartP, e.g. “the result of dividing three into four”

PartP! →! V-ing NP Prep NP

where the PartP rules have the same meaning

PartP! →! multiplying NP by NP ! [NP1 * NP2]

PartP! →! multiplying NP and NP ! [NP1 * NP2]

PartP! →! dividing NP by NP ! [NP1 / NP2]

PartP! →! dividing NP into NP ! [NP2 / NP1]

PartP! →! adding NP to NP! [NP1 + NP2]

PartP! →! adding NP and NP! [NP1 + NP2]

PartP! →! subtracting NP from NP! [NP2 – NP1]

15

Are you hoping we’re
done yet?

16

Two more NP classes
NPs like “three plus four”

NP! →! NP Op NP! [NP1 Op NP2]

Op! →! plus! [+]

Op! →! minus! [–]

Op! →! times! [*]

Op! →! over! [/]

NPs like “the sum of three and four”

NP! → ! the Nop NP and NP! [NP1 NOp NP2]

NOp! →! sum of! [+]

NOp! → !difference between! [–]

NOp! → !quotient of! [/]

NOp! → !product of! [*]

17

Grammar coverage

• This gives a glimpse into the problems and
complexities involved in creating a realistic
grammar that “can do stuff”.

• Covers: “What is thirty five divided by the
result of multiplying the sum of two and
two and the product of four over five and
five?”

18

Grammar coverage
• This grammar will not quite handle the example dialogue

• We could extend the grammar to cover

• numbers greater than 999

• the use of square root (extension of one rule; similar
for sine, cosine, logarithm, etc.)

• cases like “Add to that four times four.”
(We’d have to add a rule
! ! Imp → V Prep that NP
for every Imp rule of the form
! ! Imp → V NP Prep NP)

19

Grammar Coverage

• For an application, the question of a
grammar’s coverage is very important

• What and how much linguistic input can
the grammar handle, i.e. is covered by the
grammar?

• This determines range of the application,
i.e. the cases in which it can be used

20

