Human Communication |
Lecture 8

A language-controlled
calculator

* Natural language is very complex
* Thus, building a natural language model is very difficult

* One way of dealing with this is to restrict the language
domain

* We will look at a language-controlled calculator
* structure and grammar rules (syntax)
* how to represent meaning (semantics)

* how to answer questions

A language-controlled
calculator

* Task: building a language-controlled
calculator

* English-language input and output
* Two problems (sub-tasks)
* syntax and semantics of numbers

* syntax and semantics of commands and
questions

User: How much is three times four?
Program:Twelve

User: Multiply three by three.
Program: OK

User:Add to that four times four.
Program: OK

User:What's the square root of that?
Program: Five

User:Add three hundred and eighty five to fifteen thousand nine hundred
eighteen.

Program: OK

User: How much is that?

Program: Sixteen thousand three hundred and three

User:What's twenty five divided into one hundred and twenty thousand?

Program: Forty eight hundred

Syntax & Semantics of
numbers

Num — zero Teen — eleven I

Num = To99 To%99
Teen — nineteen 19
Num - To999 To999
Tens — twenty 20
To99 — Digit Digit :
To99 — Teen Teen Tens = ninety 90
To99 — Tens Tens To999 — Hun Hun
To99 — Tens Digit Tens + Digit To999 — HunTo99 Hun +To99
Digt = one ! To999 — HunandTo99 Hun +To99
Hun — ahundred 100
Digit — nine 9
Hun — Digit hundred Digit * 100
Teen — ten 10

What we did

® Define rewrite rules for numbers < 1000

® Add expressions to each to give meaning to
structure built by rule

® Meaning of structure built from meaning of
substructures

® Non-terminal in meaning stands for
meaning of subtree

Parsing & determining
meaning

“three hundred and forty two”
Parse bottom-up; add meaning [] as we go

Rules to use:
Digit — three [3]
Tens — forty [40]

Digit — two [2]

three hundred and forty two

»Digit = three [3]
Digit[3] hundred and forty two
»Tens — forty [40]
Digit[3] hundred and Tens[40] two
»Digit = two [2]

Digit[3] hundred and Tens[40] Digit[2]

Digit[3] hundred and Tens[40] Digit[2]

»Hun

Hun[3 * 100] and Tens[40] Digit[2]

» To99

Hun[3 * 100] and To99[40 + 2]

»To999

To999[[3 * 100] + [40 + 2]]

» Num

Num[342]

So,“three hundred and forty two” is a Num with the meaning [342]

— Digit hundred

— Tens Digit

— Hun and To99

[Digit * 100]

[Tens + Digit]

[Hun +To99]

[To999]

Syntax & semantics of

the calculator

The calculator dialogues consist of two kinds of input

questions

commands.

S=1Imp ['] save the value of Imp

e S—-Q [print meaning of Q and save it

This gives the basic semantics for the system

the value of every computation is saved

in the case of questions, all of the form “How much is ...”
or something equivalent we print out the result as well.

Syntax & semantics of
questions

® Syntax of questions is simple

® Q — how much is NP [NP]

® Q — whatis NP
® For example

® “how much is seven added to six?”’

[NP]

® “what is four divided by two?”

Syntax & semantics of

commands

Commands like “Multiply three by two” all involve prepositions,
separated by a NP from the verb, but determined by it:

Imp —
Imp —
Imp —
Imp —
Imp —
Imp —

Imp —

multiply NP by NP [NP; * NP,]
multiply NP by NP [NP; * NP,]
divide NP by NP [NP / NP,]
divide NP into NP [NP2 / NP]
add NP to NP [NP; + NP]
add NP and NP [NP, + NP2]
subtract NP from NP [NP2 — NP/]

Note: for dividing, meaning depends on preposition.

12

Simple noun phrases

NP — that

NP — the result {of that}

NP — Num

the saved meaning of
previous computation

the saved meaning of
previous computation

Num

Complex NPs —“three
added to four”

This class of NPs requires rules of the general form
Imp =V NP Prep NP e.g.“add seven to three”
NP — NP V-ed Prep NP, e.g.“seven added to three”

Both have the same meaning; the NP rules are:

NP — NP multiplied by NP [NP; * NP,]
NP — NP divided by NP [NP; / NP2]
NP — NP divided into NP [NP2 / NP/]
NP — NP added to NP [NP; + NP]

NP — NP subtracted from NP [NP, — NP/]

The Imp rules are analogous

Complex NPs —“the result
of dividing three into four”

This class of NPs requires rules of the general form

NP

—

the result of PartP, e.g.“the result of dividing three into four”

PartP — V-ing NP Prep NP

where the PartP rules have the same meaning

PartP
PartP
PartP
PartP
PartP
PartP
PartP

—

—

-

-

111

multiplying NP by NP
multiplying NP and NP
dividing NP by NP
dividing NP into NP
adding NP to NP
adding NP and NP
subtracting NP from NP

15

[NP; * NP,]
[NP; * NP,]
[NP; / NP3
NP2/ NPi]
[NP; + NP]
[NP; + NP]
[NP2 — NPi]

Are you hoping we're
done yet!?

Two more NP classes

NPs like “three plus four”
NP = NP OpNP [NP; Op NP]
Op — plus [*]
Op — minus [-1
Op — times [*]
Op — over [N
NPs like “the sum of three and four”

NP — theNopNPand NP [NP; NOp NP;]

NOp — sum of [+]
NOp — difference between [-1
NOp — quotient of [
NOp — product of [*]

Grammar coverage

® This gives a glimpse into the problems and
complexities involved in creating a realistic
grammar that “can do stuff”.

® Covers:“What is thirty five divided by the
result of multiplying the sum of two and

two and the product of four over five and
five?”

Grammar coverage

® This grammar will not quite handle the example dialogue
® We could extend the grammar to cover
® numbers greater than 999

® the use of square root (extension of one rule; similar
for sine, cosine, logarithm, etc.)

® cases like “Add to that four times four.”
(We'd have to add a rule
Imp — V Prep that NP
for every Imp rule of the form
Imp =V NP Prep NP)

19

Grammar Coverage

® For an application, the question of a
grammar’s coverage is very important

® What and how much linguistic input can
the grammar handle, i.e. is covered by the
grammar?

® This determines range of the application,
i.e. the cases in which it can be used

20

