
Human Communication 1
Lecture 6

1

Language models

• Two kinds of language models

• Grammar-based models

• Statistical models

• We still look at grammar-based models
today

2

Grammar

• Symbols

• Rules

• Procedure of rule application

3

Formal grammar

• More technically, a formal grammar consists of

• a finite set of terminal symbols

• a finite set of nonterminal symbols

• a set of rules (also called production rules)

• with a left- and a right-handed side

• each consisting of a word

• a start symbol

4

Special symbols

• Formal grammars usually have two special
symbols

• S: the start symbol

• ε: the empty string (sometimes: λ)

5

Terminology

• Alphabet: A set of (terminal and
nonterminal) symbols

• Word: A string of symbols from an alphabet
(what we also called ‘sentence’)

• Grammar: A set of rules defined on a
alphabet

• Language: The set of words defined by a
grammar

6

Formal definition

A grammar G =〈Φ, ∑, R, S〉consists of

1. An alphabet Φ of nonterminal symbols,

2. An alphabet ∑ of terminal symbols,

3. A set R ⊆ Γ*╳Γ* of rules (where Γ = Φ ∪ ∑),

4. A start symbol S ∈ Φ.

7

Representing formal
grammar

• Nonterminals are usually represented by
upper-case letters {S, A, B}

• Terminals by lower case letters {a, b, c}

• The start symbols by S

8

Example
• Grammar

• Alphabet: a, b

• Start symbol: S

• Rules:

1. S → aSb

2. S → ba

• What words are covered by this grammar?

9

Solution
• Apply rewrite rules until the result contains only symbols

from the alphabet.

• We can rewrite

• S to aSb by replacing S with aSb (rule 1);

• aSb to aaSbb (rule 1)

• aSb to abab (rule 2)

• For example: S → aSb → aaSbb → aababb

• The language of this grammar consists of the words
anbabn (where n are 0 or more occurrences of the
symbol, but the number of a’s and b’s is the same)

10

Chomsky hierarchy

• 4 types of grammars (Type-0 to Type-3)

• Type-0: recursively enumerable

• Type-1: context sensitive

• Type-2: context free (CFG)

• Type-3: regular

11

Type-3: regular

• LHS: 1 nonterminal

• RHS: 1 terminal and 0 or 1 nonterminals

• Pattern:
N → t
N1 → t N2 OR N1→ N2 t

12

Type-2: context free
(CFG)

• LHS: 1 nonterminal

• RHS: terminals and nonterminals

• Pattern:
N → γ
(where N is a nonterminal; γ is a string of
terminals and nonterminals)

13

Type-1: context
sensitive

• LHS: at least 1 nonterminal

• RHS: terminals and nonterminals

• Pattern:
αNβ → αγβ
(where N is a nonterminal; α, β, γ are
strings of terminals and nonterminals; γ is
not empty)

14

Type-1: context
sensitive

• αNβ → αγβ
• α and β are the context in which N can be

replaced by γ

15

Type-0: recursively
enumerable

• All grammars and languages

• (Those that can be recognised by a Turing
Machine.)

• Pattern:
α → β
(where α and β are any string of terminals
and nonterminals, including the empty
string)

16

Chomsky hierarchy

17

Type-0 · recursively enumerable

Type-1 · context sensitive

Type-2 · context free

Type-3 · regular

What type?
S → aS

S → abS

S → c

18

What type?
S → aS

S → abS

S → Sb

S → c

19

What type?
S → aS

S → abS

S → Bb

B → ε
S → cngw

20

What type?
S → aS

S → aABb

A → Aa

A → a

B → Bb

B → b

21

What type?
S → aS

S → aABb

aA → Aa

Aa → a

B → Bb

B → b

22

What type?
S → aS

S → aABb

aAb → Aa

Aa → a

B → Bb

Bb → b

23

Resource

• The Wikipedia page on Chomsky
Hierarchies is a good starting point for
formal grammars:
http://en.wikipedia.org/wiki/
Chomsky_grammar

24

Why the distinction?

• Why is this distinction relevant?

• Answer: different computational complexity

• This means: different amount of resources
needed

• This means in particular: different execution
times

• Generally: The simpler the grammar type, the
faster the parsing and generation

25

Human grammar

• What type of grammar is human grammar?

• Probably in between context free and context
sensitive: mildly context-sensitive grammars
(MCSG)

• MCSGs

• allow certain kinds of context dependencies

• have low computational complexity (they
have polynomial complexity)

26

Parsing algorithms

• In addition to complexity of the grammar,
there are also different parsing algorithms

• Parallel instead of serial processing:
If multiple rules apply, investigate all
possibilities at once.

• Problem:
A large number of possible analyses must be
stored (probably exponentially many: length-
of-sentencesome-constant).

27

What is the problem?

• The simple parsing models have difficulties

• Serial model requires too much time

• Parallel models requires too much
storage

• Solution: Often a combination of serial and
parallel parsing as well as top-down and
bottom-up is used

28

