Human Communication I Lecture 14

A Logic for "Reading Between the Lines" Grice's Maxims

What are Grice's Maxims

The philosopher Paul Grice proposed 4 conversational maxims that arise from the pragmatics of natural language. The Gricean or Grice's Maxims are a way to explain the link between utterances and what is understood from them.

Grice's Maxims (a)

The Maxim of Quality

- Try to make your contribution one that is true, specifically:
 - (i) do not say anything you think is false.
 - (ii) do not say anything for which you lack adequate evidence.

The Maxim of Quantity

 Make your contribution as informative as is required for the current purposes of the exchange, and no more.

Grice's Maxims (b)

The Maxim of Relevance

- Make your contributions relevant.

The Maxim of Manner

 Be perspicuous, and specifically: avoid obscurity avoid ambiguity be brief be orderly

Review: Examples (a)

- These examples show us how to "read between the lines"
 - (I) Max stood up. John greeted him.

Be orderly: standing up before greeting.

They allow us to infer things from what's not said:
(2) A: Can you tell me the time?

B: The milkman has come

Quality and Quantity: B doesn't know the exact time, because he doesn't say it!

Review: Examples (b)

(3) Alf: Keith supervises 12 students.

Quality and Quantity: Alf believes Keith supervises *exactly* 12 students, because if he believed that he supervised more, he would have said so.

(Formally, "12" tends to be taken to mean "at least 12" ...)

Conflict (a)

- Clues about meaning from the maxims sometimes conflict with other clues from other information
- Sometimes, the conflicting clue is "hard and fast", and the information it stems from is certain

Conflict (b)

- Sometimes the conflicting information is like the maxims, in that it also is a rule with exceptions
- Sometimes, the maxims conflict with themselves: e.g., be orderly conflicts with be relevant

Conflict with "Hard and Fast" Rule (a)

(4) a. The lone ranger jumped on his horse.b. He rode into the sunset.

Be Orderly: (4a) is before (4b)

Conflict with "Hard and Fast" Rule (b)

(5) a. Before the lone ranger rode into the sunset,b. he jumped on his horse in a reckless fashion.

Be Orderly: (5b) is before (5a) **"Before"**: (5a) is before (5b)

Before wins, because there are no exceptions to Before a, b meaning that a is before b, whereas Be orderly is just a rule of thumb.

When the Conflicting Information isn't Explicit (a)

(1) a. Max stood up.

b. John greeted him.

Be Orderly: a is before b.

(6) a. Max fell.

b. John pushed him.

Be Orderly: a is before b.

Be Relevant: pushing and falling connected somehow...

When the Conflicting Information isn't Explicit (b)

- World Knowledge: . . . and most plausible connection is pushing caused the falling.
 - → Be Orderly: a is before b
 - → World Knowledge and
 - Be relevant: b is before a
 - WK and **be relevant** win, in this discourse context.

Discourse Context

The discourse context can change the result
Pushing is **before** falling:
(6) Max fell. John pushed him.

→ Falling is **before** pushing:

(7) John and Max were at the edge of the cliff. Max felt a sharp blow on the back of his neck. He fell.John pushed him.

Max went over the edge of the cliff.

The Conflicting Information isn't Explicit Again

(8) a. Max ate a huge meal last night.

b. He devoured lots of salmon.

- → Be Orderly: a is before b
- →WK and be relevant: b is part of a
- → WK and relevance win again.
 - Why?
 - How can we model this?

Review: What Syntax Tells Us About Meaning

- TIME is central to (1), (6) and (8).
- TENSE tells us about time.
- Our grammar hasn't encoded how tense affects meaning.

Assumptions About What Syntax Tells Us (a)

We will assume syntax tells us:

- I. The bits of meaning our grammar has encoded so far
- 2. The following things about time:

(a) If the sentence is in the past tense: event is prior to time of speech, *Max fell*

(b) If the sentence is in the present tense: event is at the time of speech, *Max falls*

(c) If the sentence is in the future tense: event is after the time of speech, *Max will fall*

Assumptions About What Syntax Tells Us (b)

- 3. The textual order of the events described.
- 4. That events described in juxtaposed sentences must be connected somehow:
- causal relation; or
- part/whole relation; or ...

Other knowledge tells us more about meaning.

- The order in which the events occur.

Reasoning with Rules that Have Exceptions

- Rules with exceptions are DEFAULT RULES.
- Be Orderly is a default rule.
- Exceptions can stem from:
 - tense of the sentence;
 - connective like before or while
 - world knowledge about causation
 - and more...

The Patterns Of Inference We Need to Model (a)

• Birds fly is another rule with exceptions...

Defeasible Modus Ponens

Birds fly

Tweety is a bird

So: Tweety flies

Defeat of Defeasible Modus Ponens

Birds fly

Tweety is a bird

Tweety doesn't fly

So: Tweety doesn't fly

The Patterns Of Inference We Need to Model (b)

• The Penguin Principle

All penguins are birds

Birds fly

Penguins don't fly

Tweety is a penguin

So: <u>Tweety doesn't fly</u>

More Patterns of Inference (a)

• The Nixon Diamond

Quakers are pacifists Republicans are not pacifists Nixon is a Quaker Nixon is a Republican

So: we conclude nothing about

whether Nixon is a pacifist or not

More Patterns of Inference (b)

 Birds fly → If Tweety is a bird, then normally Tweety flies

Attach a Gricean Maxim as a **Default** rule:

• **Be Orderly**: If the event *e1* is described in a text just before the event *e2* is described, then normally, *e1* occurs before *e2* in the world.

More Default Rules for Extracting Meaning From Text

A Mixture of Relevance and Causal Knowledge:

Push Law: If the event e₁ is described in a text just before the event e₂, and moreover, e₁ is an x falling event, and e₂ is a y pushing x event, then normally, e₂ caused e₁.

More Default Rules for Extracting Meaning From Text

Indefeasible Causal Knowledge:

Causes Precede Effects: If e₂ causes e₁, then (without exception), e₂ precedes e₁.

Things to Note:

- **Push Law** is quite specific, but it could be generalised.
- The consequents of **Be Orderly** and **Push Law** conflict.
- The *if*-clause of the **Push Law** entails that of **Be Orderly**.

Working Out What a Text Means (a)

- (1) a. Max stood up.
 - b. John greeted him.
- (6) a. Max fell.
 - b. John pushed him.
- (1) and (6) have same syntax, and so you can extract similar meaning from this:
 - two events are connected, and happen in the past.

Working Out What a Text Means (b)

- Default rules and reasoning distinguish them.
 (1):
 - Rules that apply: **Be Orderly**
 - Inference Pattern: Defeasible Modus Ponens
 - Result: the standup up precedes the greeting.
- (6):
 - Rules that apply: **Be Orderly**, **Push Law**
 - Inference Pattern: The Penguin Principle
 - Result: the pushing causes/precedes the falling.

Changing Context Can Change Meaning

(7) John and Max were at the edge of the cliff. Max felt a sharp blow on the back of his neck. <u>He fell</u>.

John pushed him.

Max went over the edge of the cliff.

- Things in discourse context will make other default rules apply.
- This changes the inference pattern.
- This changes the conclusions.

More Penguins (a)

(8) a. Max ate a gourmet meal.b. He devoured lots of salmon.

Meal Law: If an event e₁ is described just before the event e₂, where e₁ is the event of x eating a meal, and e₂ is the event of x devouring something, then normally:
(i) e₂ is part of the event e₁, and
(ii) the devoured item was part of the meal.

More Penguins (b)

- Rules that apply: **Be Orderly**, **Meal Law**.
- Inference Pattern: The Penguin Principle.
- Result:

(i) devouring salmon is part of eating the meal.(ii) salmon is part of the meal.

The Penguin Principle means you never ignore clues that are relevant for working out what a text means.

Nixon Diamonds and Odd Texts/Jokes (a)

(9) a. Max ate a gourmet meal.b. He devoured a rubber tyre.

- Rubber Tyre: If x is a gourmet meal and y is a rubber tyre, then normally, y is not part of x.
- Rules that apply: Be Orderly, Meal Law, Rubber Tyre

Nixon Diamonds and Odd Texts/Jokes (b)

- Inference Pattern: Irresolvable Conflict/
 "Nixon Diamond"
- Result: No conclusions about the connection.
- → This makes the text sound odd, or like a joke.

A "Joke" (a)

- (10) John likes mustard on his thighs, but Bill prefers suntan lotion.
- Clues for how to interpret thighs:
 - Mustard: favour chicken.
 - Suntan tan lotion: favour human.
 - Both clues are default.
 - They conflict with each other.
- Inference Pattern: Nixon Diamond.

Another "Joke" (b)

- Conclusion: Don't know if the thighs are chicken or human.
- Word pun!

Nixon Diamond is the key to jokes!

Bigger Discourse (a)

- So far, we've only looked at connections between sentences that are next to each other.
- But sometimes, a sentence connects with an earlier sentence than the previous one.
- (11) a. I have several hobbies.

b. I collect classic cars.

c. My favourite car is a 1968 Alfa Romeo spider.

d. I also take Ceroc classes every Wednesday night.

Bigger Discourse (b)

- (IId) elaborates hobbies I have (i.e., (IIa)), rather than talk about cars.
- Evidence for this discourse popping:
 - -(IIc,d) on its own would sound odd.
 - -(IIa,b,d) makes sense.