GAGP Tutorial 6 (week 9) Ant Colony Optimisation

This tutorial is on the travelling salesman problem and ant colony optimization.
Consider the following (very small) TSP:
$d(A, B)=2, d(A, C)=3, d(A, D)=5, d(B, C)=3, d(B, D)=3, d(C, D)=4$

1. How many different tours are possible? How many tours are possible with a TSP containing N cities?
2. What is the optimal (shortest) tour for the TSP given above?
3. The probability that an ant can move from i to j is $p(i, j)$ in the lecture slides. This can be viewed as an element in a matrix, the pheromone matrix.

Use the Ant Colony Optimisation Probability Rule given below and an initialised pheromone matrix with $\tau(i, j)=1.0$ for all $\mathrm{i}, \mathrm{j}, \mathrm{i} \neq \mathrm{j}$ (and 0.0 for $\mathrm{i}=\mathrm{j}$). Calculate the probabilities that an ant placed initially on city A will move to B, C or D .

$$
\operatorname{Pr}(i, j)=\frac{\tau(i, j) \cdot[\eta(i, j)]^{\beta}}{\sum_{\text {allowed } j} \tau(i, j) \cdot[\eta(i, j)]^{\beta}}
$$

$\eta(i, j)=1 / d(i, j), \beta=2$
4. Now use the following pheromone values and recalculate the probabilities for $\operatorname{Pr}(\mathrm{A}, \mathrm{B})$, $\operatorname{Pr}(\mathrm{A}, \mathrm{C})$ and $\operatorname{Pr}(\mathrm{A}, \mathrm{D})$. What about $\operatorname{Pr}(\mathrm{B}, \mathrm{A})$?
$\tau(A, B)=4.0, \tau(A, C)=4.0, \tau(A, D)=0.2, \tau(B, C)=0.4, \tau(B, D)=2.0, \tau(C, D)=4.0$,
5. Assume that A-B-D-C-A is the fittest of the current iteration, that the evaporation (ρ) is 0.75 and that the reinforcement value is 1.0 . Update the values above using the pheromone update rule:
$\tau(i, j)=[\tau(i, j) * \rho]+\Delta(i, j)$
where $\Delta(i, j)$ is 1.0 if $\mathrm{i}-\mathrm{j}$ or $\mathrm{j}-\mathrm{i}$ is a link in the best solution and 0.0 otherwise.
What happens if ρ is smaller? Does that seem reasonable? How could you use this phenomenon? (see Q. 6)
6. Assume that ants are allowed to lay pheromone on a path at every timestep, so that the pheromone update rule is applied at each timestep. Come up with a combination local/global updating scheme that encourages exploration and exploitation- consider what parameters influence this.
7. How would you apply ACO to finding the cheapest way to fly from Edinburgh airport to Bora Bora airport?

