
Genetic Algorithms and Genetic Programming

Michael Herrmann
michael.herrmann@ed.ac.uk, phone: 0131 6 517177, Informatics Forum 1.42

Lecture 9: (23/10/09)

Genetic programming II

Overview
1. Introduction: History
2. The genetic code
3. The canonical genetic algorithm
4. Examples & Variants of GA
5. The schema theorem
6. Hybrid algorithms
7. Evolutionary robotics
8. Genetic Programming
9. Genetic Programming II
10. Practical issues

GP: Overview
Evolution of random programs of a purpose specified
by a fitness function
Choose: non-terminals (functions), terminals
Initialization (termination criterion)
Closure, defaults, sufficiency
Fitness cases
Choose parameters (population size, probabilities)
Selection
Crossover and mutation.
Particularly operators on trees: subtree replacement,
exchange, shift (shrink and hoist)

GP Flowchart
John R

. K
oza: G

E
C

C
O

 2007 Tutorial / Introduction to G
enetic

P
rogram

m
ing, http://w

w
w

.genetic-program
m

ing.org

Initialization

The initial population might be lost quickly, but general
features may determine the solutions
Assume the functions and terminal are sufficient
Structural properties of the expected solution
(uniformity, symmetry, depth, …)
Lagrange initialization:
Crossover can be shown to produce programs with a typical distribution (Lagrange
distribution of the second kind) which can be used also for initialization

Seeding: Start with many copies of good candidates

Riccardo Poli, William B Langdon, Nicholas F. McPhee (2008) A Field Guide to
Genetic Programming. For free at http://www.lulu.com/content/2167025

Automatically Defined Functions
“Efficient code”: Loops, subroutines, functions,
classes, or … variables
Automatically defined iterations (ADIs), automatically
defined loops (ADLs) and automatically defined re-
cursions (ADRs) provide means to reuse code. (Koza)
Automatically defined
stores (ADSs) provide
means to reuse the
result of executing code.
Solution: function-
defining branches
(i.e., ADFs) and
result-producing
branches (the RPB)
e.g. RPB: ADF(ADF(ADF(x))), where ADF: arg0×arg0

Grammar-based Constraints
Constraints can either be included in the fitness function,
but are more efficiently implemented
by the operators. One way
is to require individuals
to be generatable
by a grammar.
Other approaches
require types for
terminals, functions
and return values.

Hybrid GP
Information theoretic measures and minimum
description length in fitness function
Local search: Hill-climbing for adaptation of numerical
values
Co-evolution: Fitness depends on the individuals in
other populations
Editing: Apply regularly rules to increase efficiency
(e.g. removing branches from a multiplication subtree
that are always zero, type consistency check,
grammatical GP)

GP Theory
Schema theorem (sub-tree at a particular position)
− worst case (Koza 1992)
− exact for one-point crossover (Poli 2000)
− For many types of crossover (Poli et al., 2003)

Markov chain theory
Distribution of fitness in search space
− as the length of programs

increases, the proportion
of programs implementing
a function approaches
a limit

Halting probability
− for programs of length L is of order 1/L1/2,

while the expected number of instructions
executed by halting programs is of order L1/2.

GP Theory: Bloat
Bloat
− increase in program size not accompanied by any

corresponding increase in fitness
− but: the optimal solution may be a large program

Theories (non of these is universally accepted)
− replication accuracy theory
− inactive code
− nature of program search spaces theory
− crossover bias (1-step-mean constant, but “Lagrange” variance)

Size evolution equation (similar to exact schema theorem)

Practical solutions: Size and Depth Limits,
parsimony pressure (fitness reduced by size: f - c l(i))

Plots of the evolution average size over 500 generations for multiple runs of the 6-MUX
problem with various forms of covariant parsimony pressure. The “Constant” runs had a
constant target size of 150. In the “Sin” runs the target size was sin((generation + 1)/50) × 50
+ 150. For the “Linear” runs the target size was 150 + generation. The “Limited”
runs used no size control until the size reached 250, then the target was held at 250. Finally,
the “Local” runs used c = -Cov(l, f)/Var(l), which allowed a certain amount of drift but still
avoided runaway bloat.

Riccardo Poli, William B Langdon, Nicholas F. McPhee (2008) A Field Guide to Genetic Programming.

Visualisation of the size and shape of the entire population of
1,000 individuals in the final generation of runs using a depth limit
of 50 (on the left) and a size limit of 600 (on the right). The inner
circle is at depth 50, and the outer circle is at depth 100. These
plots are from (Crane and McPhee, 2005) and were drawn using
the techniques described in (Daida et al., 2005).

Riccardo Poli, William B Langdon, Nicholas F. McPhee (2008) A Field Guide to Genetic Programming.

Troubleshooting

Is there a bug in the code? Closure
Can you trust your results? Crossvalidation
There are no silver bullets: Expect multiple runs
Small changes can have big effects
Big changes can have no effect
Study your populations
Encourage diversity
Embrace approximation: No program is error-
free
Control bloat
Runs can be very long: Checkpoint results

Characteristics Suggesting the Use of GP
1.Discovering the size and shape of the solution
2.Reusing substructures
3.Discovering the number of substructures,
4.Discovering the nature of the hierarchical references

among substructures,
5.Passing parameters to a substructure,
6.Discovering the type of substructures (e.g.,

subroutines, iterations, loops, recursions, or storage),
7.Discovering the number of arguments possessed by a

substructure,
8.Maintaining syntactic validity and locality by means of

a developmental process, or
9.Discovering a general solution in the form of a

parameterized topology containing free variables

Strong Indicators for Using GA or ES

The size and shape of the solution is known or fixed
Ascertaining numerical parameters is the major issue
Simplicity is a major consideration
On-chip evolution the algorithm's logic is implemented
on the chip in hardware

John R. Koza: GECCO 2007 Tutorial / Introduction to Genetic Programming
http://www.genetic-programming.org

Fundamental Differences between GP
and other Approaches to AI and ML

1. Representation: Genetic programming overtly conducts it search
for a solution to the given problem in program space.

2. Role of point-to-point transformations in the search: Genetic
programming does not conduct its search by transforming a single
point in the search space into another single point, but instead
transforms a set of points into another set of points.

3. Role of hill climbing in the search: Genetic programming does not
rely exclusively on greedy hill climbing to conduct its search, but
instead allocates a certain number of trials, in a principled way, to
choices that are known to be inferior.

4. Role of determinism in the search: Genetic programming conducts
its search probabilistically.

5. Role of an explicit knowledge base: None.
6. Role of formal logic in the search: None.
7. Underpinnings of the technique: Biologically inspired.

Cross-Domain Features

Native representations are sufficient when working
with genetic programming
Genetic programming breeds “simulatability” (Koza)
Genetic programming starts small
Genetic programming frequently exploits a simulator’s
built-in assumption of reasonableness
Genetic programming engineers around existing
patents and creates novel designs more frequently
than it creates infringing solutions

John R. Koza: GECCO 2007 Tutorial / Introduction to Genetic Programming
http://www.genetic-programming.org

Promising GP Application Areas
Problem areas involving many variables that are interrelated in
highly non-linear ways
Inter-relationship of variables is not well understood
A good approximate solution is satisfactory
− design, control, classification and pattern recognition, data mining, system

identification and forecasting
Discovery of the size and shape of the solution is a major part of
the problem
Areas where humans find it difficult to write programs
− parallel computers, cellular automata, multi-agent strategies / distributed AI, FPGAs

"black art" problems
− synthesis of topology and sizing of analog circuits, synthesis of topology and tuning

of controllers, quantum computing circuits, synthesis of designs for antennas
Areas where you simply have no idea how to program a solution,
but where the objective (fitness measure) is clear
Problem areas where large computerized databases are
accumulating and computerized techniques are needed to
analyze the data

Open Questions/Research Areas
• Scaling up to more complex problems and larger programs
• Using large function and terminal sets.
• How well do the evolved programs generalise?
• How can we evolve nicer programs?

• size, efficiency, correctness
• What sort of problems is GP good at/ not-so-good at?
• How does GP work? etc.

• Reading: J. Koza 1990, especially pp 8–14, 27–35, 42–43
(paper linked to web page)

• Riccardo Poli, William B Langdon, Nicholas F. McPhee (2008)
A Field Guide to Genetic Programming. For free at
http://www.lulu.com/content/2167025

• see also: http://www.genetic-programming.org
http://www.geneticprogramming.us

• Outlook: Practical issues of EC

Alan Turing (1950) “Computing
Machinery and Intelligence”

We cannot expect to find a good child-machine at the
first attempt.
One must experiment with teaching one such machine
and see how well it learns. One can then try another and
see if it is better or worse. There is an obvious
connection between this process and evolution:

‘Structure of the child machine’ = Hereditary material
‘Changes of the child machine’ = Mutations
‘Natural selection’ = Judgement of the experimenter

	Overview
	GP: Overview
	GP Flowchart
	Initialization
	Automatically Defined Functions
	Grammar-based Constraints
	Hybrid GP
	GP Theory
	GP Theory: Bloat
	Troubleshooting
	Characteristics Suggesting the Use of GP
	Strong Indicators for Using GA or ES
	Fundamental Differences between GP and other Approaches to AI and ML
	Cross-Domain Features
	Promising GP Application Areas
	Open Questions/Research Areas
	Alan Turing (1950) “Computing Machinery and Intelligence”

