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Genetic programming



Recent Progress in  Evolution Theory

J. Barrick et al. (2009) Genome evolution and adaptation in a long term expeiment with Escherichia coli. Nature 08480.

40000 generations 
(1988-2009: 21 years!)
Initial population: 
12 strains of E. coli
Constant conditions 
(restricted glucose supply)
first half (20000 generat.): 
45 mutations often related to life span and efficience
second half (20000 generat.): 653 mutations in some 
strains but without any obvious effects on fitness
Conclusions: Relations between mutation rate and 
fitness are more complex than expected



Overview
1. Introduction: History
2. The genetic code
3. The canonical genetic algorithm
4. Examples & Variants of GA
5. The schema theorem
6. Hybrid algorithms
7. Evolutionary robotics
8. Genetic Programming
9. GP: Examples and applications
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Evolutionary algorithms



Multidimensional mutations in ES

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing. Evolution Strategies

Uncorrelated mutation with one σ Uncorrelated mutation with L σi’s Correlated mutations

y = x + N (0,C’)
x  stands for the vector ( x1,…,xn )
C’ is the covariance matrix C

after mutation of the σ values

Correlated mutations:



http://www.bionik.tu-berlin.de/intseit2/xs2mulmo.html

Hills are not independently distributed (hills of hills)
Find a local maximum as a start state
Generate 3 offspring populations (founder populations) 
that then evolve in isolation 
Local hill-climbing (if convergent: increase diversity of 
offspring populations)
Select only highest 
population 
Walking process from 
peak to peak within an 
“ordered hill scenery”
named Meta-Evolution
Takes the role of 
crossover in GA

Nested Evolution Strategy



Genetic Programming

Genetic programming now routinely delivers 
high-return human-competitive machine 
intelligence.
Genetic programming is an automated 
invention machine.
Genetic programming can automatically create 
a general solution to a problem in the form of a 
parameterized topology.

John R. Koza: GECCO 2007 Tutorial / Introduction to Genetic Programming
http://www.genetic-programming.org



Is it possible to create computer programs by 
evolutionary means?
Let P(0) be a population of randomly generated 
programs pi
For each pi, run it on some input and see what it 
does. Rate it for fitness based on how well it does.
Breed the fitter members of P(0) to produce P(1)
If happy with the behaviour of the best program 
produced then stop.
. . . but how?

Evolving Programs



How?
What language should the candidate programs be expressed 
in?
C, Java, Pascal, Perl, Lisp, Machine code?
How can you generate an initial population?
How can you run programs safely? Consider errors, infinite 
loops, etc.?
How can you rate a program for fitness?
Given two selected programs, how can they be bred to create 
offspring?
What about subroutines, procedures, data types, encapsulation, 
etc.
What about small, efficient programs?



Koza: evolving LISP programs



Random Programs and Closure

Defaults: Choose a reasonable set of symbols, ignore arguments, 
double arguments, return max_n etc.



Fitness Cases
How do we rate a program for fitness?
Answer: run it on some “typical” input data for which 
we know what the output should be. The hope is the 
evolved program will work for all other cases.

y=f(x) Input: x pi: y Output (supposed)
0 5 5
1 6 9
2 13 24
4 69 157
8 517 4079

16 4101 405
... ... ...

Fitness: how close does pi get to these perfect values?



Fitness Function
For the fitness function we could use

where j are the fitness cases, so most fit is 1, least fit is 0.



Crossover



Mutation

shrink: replace a subtree by one of its terminals
hoist: use only a subtree as a mutant

or: vary numbers, exchange symbols, exchange subtrees, …



GP Algorithm
1. Choose a set of functions and terminals for the program you 

want to evolve: 
non-terminals e.g.: if, /,* , +, −, sqrt, <, >…
terminals e.g.: x, y , −10, −9, . . . , 9, 10

2. Generate an initial random population of trees of maximum 
depth d

3. Calculate the fitness of each program in the population using 
the chosen fitness cases.

4. Apply selection, subtree crossover (and subtree mutation) to 
form a new population.

Example parameter values: population size = 10000 
crossover rate = 0.9

Selection: Fitness proportionate



GP Example
Symbolic regression on planetary orbits (Kepler’s law). Given a 
set of values of independent and dependent variables, come up 
with a function that gives the values of the dependent variables in 
terms of the values of the independent variables.

Planet A P
Venus 0.72 0.61
Earth 1.00 1.00
Mars 1.52 1.84
Jupiter 5.20 11.9
Saturn 9.53 29.4
Uranus 19.1 83.5

Kepler’s third law: Square of the period P of the planet 
proportional to cube of semimajor axis A (P = A3/2).



Learning to Plan

Aim: 
To find a program to transform any initial state into “UNIVERSAL



Learning to Plan
Terminals:
CS – returns the current stack’s top block
TB – returns the highest correct block in the stack (or NIL)
NN – next needed block, i.e. the one above TB in the goal

Functions:
MS(x) – move block x from table to the current stack. 
Return T if does something, else NIL.
MT(x) – move x to the table
DU(exp1, exp2) – do exp1 until exp2 becomes TRUE
NOT(exp1) – logical not
EQ(exp1, exp2) – test for equality



Planning Results
Generation 0: (EQ (MT CS) NN)

0 fitness cases
Generation 5: (DU (MS NN) (NOT NN))

10 fitness cases
Generation 10:

(EQ (DU (MT CS) (NOT CS))
(DU (MS NN) (NOT NN)))

166 fitness cases
Koza shows how to amend the fitness function for efficient, 
small programs: combined fitness measure rewards 
correctness AND efficiency (moving as few blocks as 
possible) AND small number of tree nodes (parsimony)



The Santa Fe Trail
Objective: 
To evolve a program which eats all the food on a trail 
without searching too much when there are gaps in the trail. 
Sensor can see the next cell in the direction it is facing
Terminals: MOVE, LEFT, RIGHT
Functions: IF-FOOD-AHEAD, PROGN2, PROGN3
Program:

(if-food-ahead move
(progn3 left

(progn2 (if-food-ahead move right)
(progn2 right (progn2 left right)))

(progn2 (if-food-ahead move left)
move)
)

) 
Fitness: amount of food collected in 400 time steps (say).



GP: a practical example



GP: Some Other Examples
• Predicting electricity demand (suppliers can buy from 

each other
• Generation of financial trading rules
• Designing new electronic circuits
• Data mining: Creating functions that “fit” well to data
• Controllers for simulated creatures, predator-prey

see: http://www.genetic-programming.org
http://www.geneticprogramming.us



Open Questions/Research Areas

• Scaling up to more complex problems and larger programs
• Using large function and terminal sets.
• How well do the evolved programs generalise?
• How can we evolve nicer programs?

– size
– efficiency
– correctness

• What sort of problems is GP good at/ not-so-good at?
• How does GP work? etc.



Reading

J. Koza 1990, especially pp 8–14, 27–35, 42–43 
(paper linked to web page)



Outlook

More Genetic Programming



Evolving neural networks for control
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