Genetic Algorithms and Genetic Programming

Lecture 8: (20/10/09)

Genetic programming

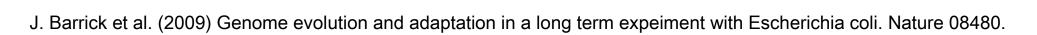
School of Informatics

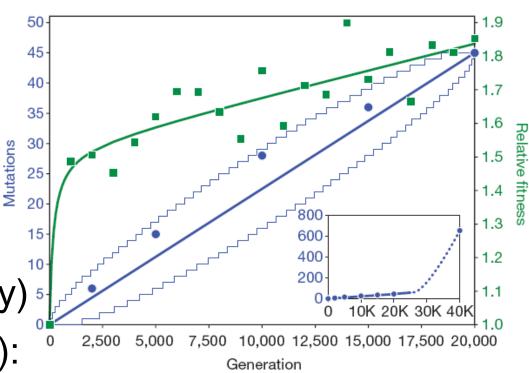
Michael Herrmann

michael.herrmann@ed.ac.uk, phone: 0131 6 517177, Informatics Forum 1.42

Recent Progress in Evolution Theory

- 40000 generations (1988-2009: 21 years!)
- Initial population: 12 strains of E. coli
- Constant conditions (restricted glucose supply)
- first half (20000 generat.): ⁰ ^{2,500} ^{5,000} ^{7,500} ^{10,000} ^{12,500} ^{15,000} ^{17,500} ^{20,00} Generation
 45 mutations often related to life span and efficience
- second half (20000 generat.): 653 mutations in some strains but without any obvious effects on fitness
- Conclusions: Relations between mutation rate and fitness are more complex than expected





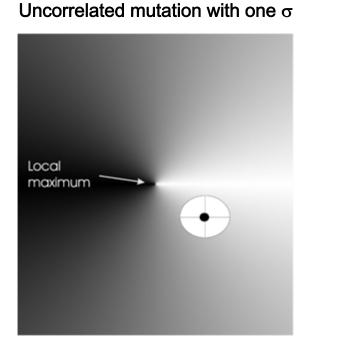
Overview

- 1. Introduction: History
- 2. The genetic code
- 3. The canonical genetic algorithm
- 4. Examples & Variants of GA
- 5. The schema theorem
- 6. Hybrid algorithms
- 7. Evolutionary robotics
- 8. Genetic Programming
- 9. GP: Examples and applications

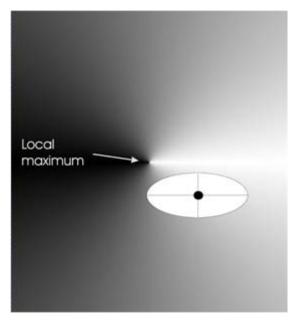
Evolutionary algorithms

	genotype (encoding)	mutation/ crossover	phenotype (applied to)
Genetic algorithm	strings of binary or integer numbers	e.g. 1-point for both with <i>p_m, p_c</i>	optimization or search of optimal solutions
Genetic programming	strings of binary or integer numbers	e.g. 1-point for both with <i>p_m</i> , <i>p_c</i>	computer programs for a computational problem
Evolutionary programming	real numbers	mutation with self-adaptive rates	parameters of a computer program with fixed structure
Evolution strategy	real numbers	mutation with self-adaptive rates	optimization or search of optimal solutions

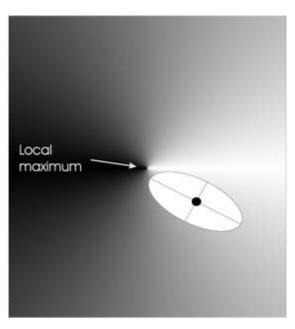
Multidimensional mutations in ES



Uncorrelated mutation with L σ_i 's



Correlated mutations



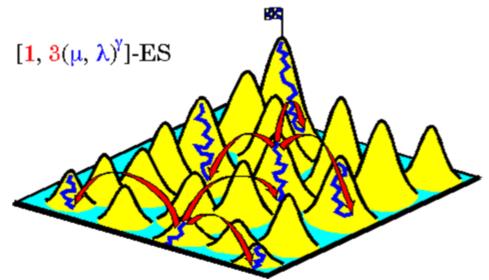
Correlated mutations:

 $y = x + \mathcal{N}(0, C')$ x stands for the vector (x_1, \dots, x_n) C' is the covariance matrix C after mutation of the σ values

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing. Evolution Strategies

Nested Evolution Strategy

- Hills are not independently distributed (hills of hills)
- Find a local maximum as a start state
- Generate 3 offspring populations (founder populations) that then evolve in isolation
- Local hill-climbing (if convergent: increase diversity of offspring populations)
- Select only highest population
- Walking process from peak to peak within an "ordered hill scenery" named *Meta-Evolution*
- Takes the role of crossover in GA



Genetic Programming

- Genetic programming now routinely delivers high-return human-competitive machine intelligence.
- Genetic programming is an automated invention machine.
- Genetic programming can automatically create a general solution to a problem in the form of a parameterized topology.

John R. Koza: GECCO 2007 Tutorial / Introduction to Genetic Programming http://www.genetic-programming.org

Evolving Programs

- Is it possible to create computer programs by evolutionary means?
- Let P(0) be a population of randomly generated programs p_i
- For each p_i, run it on some input and see what it does. Rate it for fitness based on how well it does.
- Breed the fitter members of P(0) to produce P(1)
- If happy with the behaviour of the best program produced then stop.
- . . . but how?

How?

- What language should the candidate programs be expressed in?
- C, Java, Pascal, Perl, Lisp, Machine code?
- How can you generate an initial population?
- How can you run programs safely? Consider errors, infinite loops, etc.?
- How can you rate a program for fitness?
- Given two selected programs, how can they be bred to create offspring?
- What about subroutines, procedures, data types, encapsulation, etc.
- What about small, efficient programs?

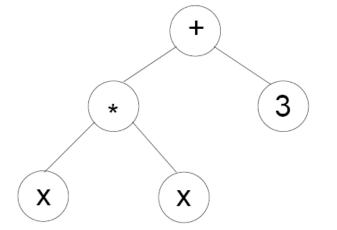
Koza: evolving LISP programs

Lisp: functional language:

$$f(x, y)$$
 is written $(f \ x \ y)$
 $10 - (3 + 4)$ is written $(- 10 \ (+ 3 \ 4))$

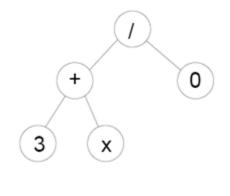
Lisp programs can be represented as trees:

 $\begin{array}{ll} f(x) = x^2 + 3 & f(x) = (+ \ (* \ x \ x) \ 3) \\ f(x) = & \end{array}$

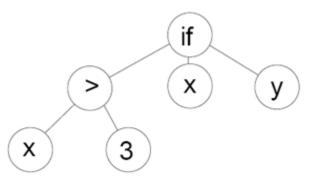


Here, + and * are function symbols (non-terminals) of arity 2, x and 3 are terminals. Given a random bag of both, we can make programs.

Random Programs and Closure



If we generate a random program: How can we avoid an error?



Another random program:

How can we evaluate this? All fun

All function calls return a result - closure.

Defaults: Choose a reasonable set of symbols, ignore arguments, double arguments, return max_n etc.

Fitness Cases

• How do we rate a program for fitness?

. . .

• Answer: run it on some "typical" input data for which we know what the output should be. The hope is the evolved program will work for all other cases.

y=f(x)	Input: x	p _i : y	Output	(supposed)
	0	5	5	
	1	6	9	
	2	13	24	
	4	69	157	
	8	517	4079	
	16	4101	405	

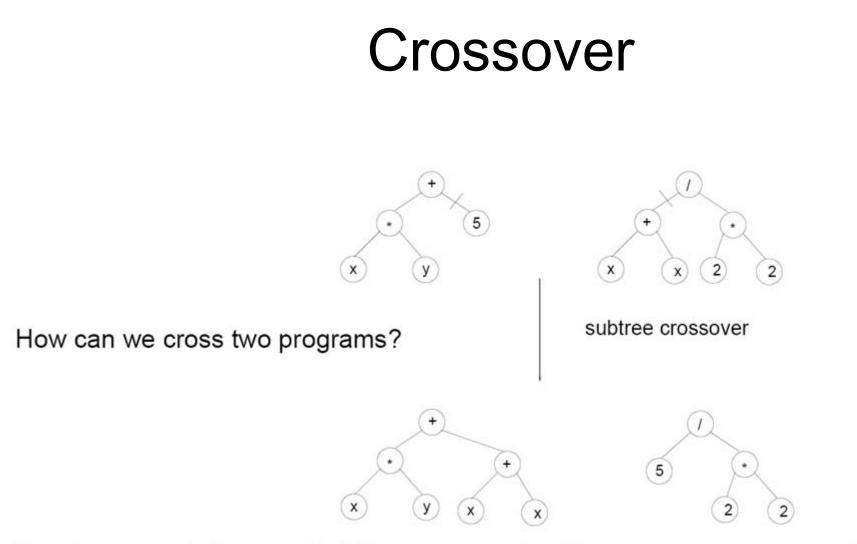
Fitness: how close does p_i get to these perfect values?

Fitness Function

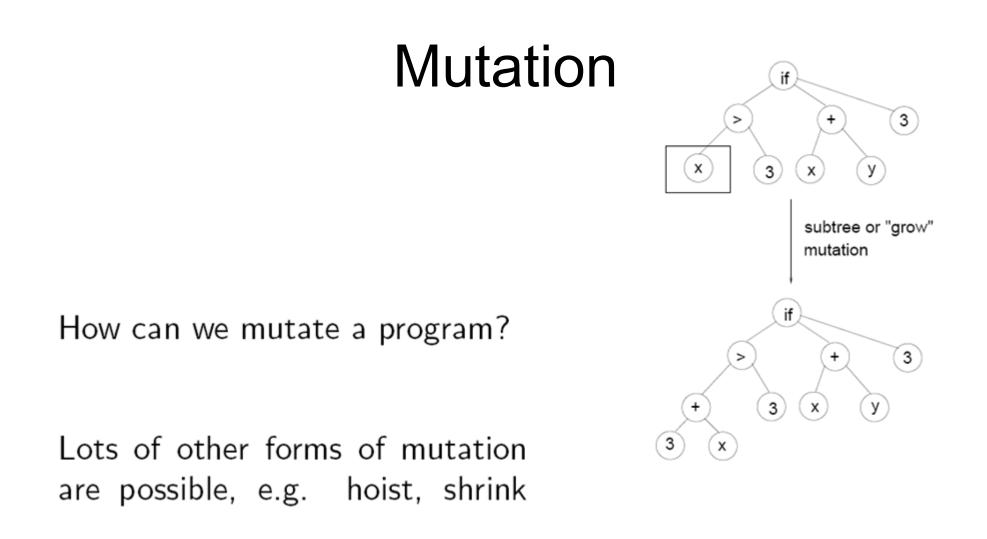
For the fitness function we could use

$$raw = \Sigma_{\text{fitness cases}} | \text{GP}_j - y_j |$$
$$adjusted = \frac{1}{1 + raw}$$
$$normalised = \frac{adjusted_i}{\Sigma_j adjusted_j}$$

where *j* are the fitness cases, so most fit is 1, least fit is 0.



Koza's original (1988-92) GP system used only crossover, to try to demonstrate that GP is "more than mutation"



shrink: replace a subtree by one of its terminals hoist: use only a subtree as a mutant

or: vary numbers, exchange symbols, exchange subtrees, ...

GP Algorithm

- 1. Choose a set of functions and terminals for the program you want to evolve:
 - non-terminals e.g.: if, /,* , +, -, sqrt, <, >...
 - terminals e.g.: *x*, *y*, −10, −9, . . . , 9, 10
- 2. Generate an initial random population of trees of maximum depth *d*
- 3. Calculate the fitness of each program in the population using the chosen fitness cases.
- 4. Apply selection, subtree crossover (and subtree mutation) to form a new population.

```
Example parameter values: population size = 10000
crossover rate = 0.9
Selection: Fitness proportionate
```

GP Example

Symbolic regression on planetary orbits (Kepler's law). Given a set of values of independent and dependent variables, come up with a function that gives the values of the dependent variables in terms of the values of the independent variables.

Planet	A	Ρ
Venus	0.72	0.61
Earth	1.00	1.00
Mars	1.52	1.84
Jupiter	5.20	11.9
Saturn	9.53	29.4
Uranus	19.1	83.5

Kepler's third law: Square of the period *P* of the planet proportional to cube of semimajor axis $A(P = A^{3/2})$.

Learning to Plan

A planning problem (Koza): Initial state:

Ν

U

А

Koza's data set:

166 fitness cases

- different initial states
- same final state

Ε

V

R

Goal state: a single stack that spells out the word "UNIVERSAL"

S

Aim: To find a program to transform any initial state into "UNIVERSAL

Learning to Plan

Terminals:

CS – returns the current stack's top block

TB – returns the highest correct block in the stack (or NIL)

NN – next needed block, i.e. the one above TB in the goal

Functions:

MS(x) – move block x from table to the current stack. Return T if does something, else NIL. MT(x) – move x to the table DU(exp1, exp2) – do exp1 until exp2 becomes TRUE NOT(exp1) – logical not EQ(exp1, exp2) – test for equality

Planning Results

Generation 0: (EQ (MT CS) NN)

0 fitness cases

Generation 5: (DU (MS NN) (NOT NN))

10 fitness cases

Generation 10:

(EQ (DU (MT CS) (NOT CS)) (DU (MS NN) (NOT NN)))

166 fitness cases

Koza shows how to amend the fitness function for efficient, small programs: combined fitness measure rewards correctness AND efficiency (moving as few blocks as possible) AND small number of tree nodes (parsimony)

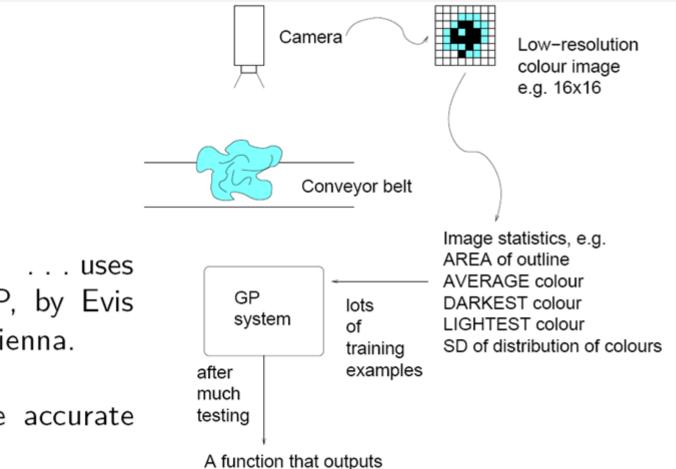
The Santa Fe Trail

Objective:

To evolve a program which eats all the food on a trail without searching too much when there are gaps in the trail. Sensor can see the next cell in the direction it is facing Terminals: MOVE, LEFT, RIGHT Functions: IF-FOOD-AHEAD, PROGN2, PROGN3 Program: (if-food-ahead move (progn3 left (progn2 (if-food-ahead move right) (progn2 right (progn2 left right))) (progn2 (if-food-ahead move left) move)

Fitness: amount of food collected in 400 time steps (say).

GP: a practical example



the grade of lettuce: A, B or C

Grading lettuces . . . uses proprietary form of GP, by Evis Technologies GmbH, Vienna.

Much faster and more accurate than humans.

GP: Some Other Examples

- Predicting electricity demand (suppliers can buy from each other
- Generation of financial trading rules
- Designing new electronic circuits
- Data mining: Creating functions that "fit" well to data
- Controllers for simulated creatures, predator-prey

see: http://www.genetic-programming.org http://www.geneticprogramming.us

Open Questions/Research Areas

- Scaling up to more complex problems and larger programs
- Using large function and terminal sets.
- How well do the evolved programs generalise?
- How can we evolve nicer programs?
 - size
 - efficiency
 - correctness
- What sort of problems is GP good at/ not-so-good at?
- How does GP work? etc.

Reading

 J. Koza 1990, especially pp 8–14, 27–35, 42–43 (paper linked to web page)

Outlook

More Genetic Programming

Evolving neural networks for control

Grammars and Robotics

1

Ω

1

1

 \cap

Ω

Ω

• Grammatical encoding of the linkage matrix (here for XOR)

								T	0	T	T	0	0	0	0	
$\begin{array}{ccc} S \rightarrow & \begin{array}{cc} A & B \\ C & D \end{array} \rightarrow \end{array}$							0	1	1	1	0	0	0	0		
		С	р	а	а		0	0	1	0	0	0	0	1		
	$\begin{array}{cc} A & B \\ C & D \end{array} \rightarrow$	а	С	а	е	、 、	0	0	0	1	0	0	0	1		
		а	а	а	а	\rightarrow	0	0	0	0	0	0	0	0		
		а	а	а	b		0	0	0	0	0	0	0	0		
								0	0	0	0	0	0	0	0	
								0	0	0	0	0	0	0	1	

Generate linkage matrix from the grammar. If at the end of rewriting there are still non-terminal nodes, that node is "dead" – not connected.

• Develop chromosome (genotype) into network (phenotype) and train for fixed no. of training episodes.

• Fitness = error at end of training

Problems with direct encoding

Fixed connections: as size of matrix grows, chromosome size grows Can't encode repeated patterns, esp. with internal structure Takes a long time to generate high-performing networks

Advantages of grammatical encoding

Can represent large connectivity matrices in compact form Shorter encoding, faster search Variable topologies including recurrent connections Better on encoder/decoder problem than direct encoding

Evolving Neural Network Behaviours

- Previous examples rely on *training data*
- What if we haven't got any?
- Example: a neural network which controls a mobile agent which is trying to achieve some goals in a dynamic environment.
- No good example of behaviour is available; or we wish to try a range of possible behaviours to see which is best.
- A fitness function is available based on goal achievement.

Evolving Neural Network Behaviours

General approach:

- Decide on how to represent inputs to and outputs from the neural network.
- Decide on a neural network architecture: might need to try a range of possibilities.
- Decide on a simulation which tests the NN's behaviour.
- Decide on a fitness function which tests how well the NN did in the simulation.
- All the usual GA stuff: chromosome representation, crossover, mutation, population size, etc.

Example: Evolving Communication

This is an example from Artificial Life: the study of computer generated "life" forms. (Matthew Quinn, University of Sussex)

- Khepera robots controlled by evolved neural networks
- Group task: robots move together as far as possible like dancing
- 8 sensor nodes, 4 motor nodes, hidden nodes
- Evolved thresholds, weights, decay parameters, size, connectivity of network
- **Co-evolution**: select two robots from population, rate them for fitness $as \ a$ pair
- Initial result: leaders and followers emerge
- Only get a working pair 50% of the time, BUT....

Example: Evolving Communication

- After a while a new single species emerges
- This behaviour uses communication based on simple movement:
 - both agents (A and B) rotate anti-clockwise
 - one agent (B) becomes aligned first and moves towards the other agent
 - agent B moves backward and forward while staying close to A
 - when A becomes aligned, it becomes the leader: it reverses its direction and is followed by B
- Very similar to movement communication used in social insects (e.g. dancing in honey bees)