Genetic Algorithms and Genetic Programming

Lecture 8: (20/10/09)

Genetic programming

f

School of
in

ormatics

Michael Herrmann

michael.herrmann@ed.ac.uk, phone: 0131 6 517177, Informatics Forum 1.42

Recent Progress in Evolution Theory

501 u im
« 40000 generations] =
(1988-2009: 21 years!) .| S N S
. Initial population: 5 o 5 &
12 strains of E. coli 2 2l e
. Constant conditions o Al
(restricted glucose supply) s>~ ol |

0 1DK 20K BDK 40K

1.0

° f”'St ha|f (20000 generat) ; 2,500 5,000 7,500 10,000 12,500 15,000 17,500 20,000
45 mutations often related to life span and efficience

« second half (20000 generat.): 653 mutations in some
strains but without any obvious effects on fitness

o Conclusions: Relations between mutation rate and
fitness are more complex than expected

J. Barrick et al. (2009) Genome evolution and adaptation in a long term expeiment with Escherichia coli. Nature 08480.

Overview

1. Introduction: History

2. The genetic code

3. The canonical genetic algorithm
4. Examples & Variants of GA

5. The schema theorem
0

I

8

9

. Hybrid algorithms
. Evolutionary robotics

. Genetic Programming -

. GP: Examples and applications

Evolutionary algorithms

genotype mutation/ phenotype
(encoding) crossover (applied to)
Genetic strings of binary or |e.g. 1-point optimization or
algorithm iInteger numbers for both with | search of optimal
Py Py solutions
Genetic strings of binary or |e.g. 1-point computer programs
programming | integer numbers for both with | for a computational
Py Py problem

Evolutionary
programming

real numbers

mutation with
self-adaptive
rates

parameters of a
computer program
with fixed structure

Evolution
strategy

real numbers

mutation with
self-adaptive
rates

optimization or
search of optimal
solutions

Multidimensional mutations in ES

Uncorrelated mutation with one & Uncorrelated mutation with L c;’s Correlated mutations

Correlated mutations: V=x + 4(0,C)
x stands for the vector (x,,...,x,)

C’ is the covariance matrix C
after mutation of the o values

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing. Evolution Strategies

Nested Evolution Strategy

o Hills are not independently distributed (hills of hills)

. Find a local maximum as a start state

« Generate 3 offspring populations (founder populations)
that then evolve in isolation

« Local hill-climbing (if convergent: increase diversity of
offspring populations)

« Select only highest
population

« Walking process from
peak to peak within an
“ordered hill scenery”
named Meita-Evolution

. Takes the role of
crossover in GA

http://www.bionik.tu-berlin.de/intseit2/xs2mulmo.html

Genetic Programming

o Genetic programming now routinely delivers
high-return human-competitive machine
intelligence.

o Genetic programming is an automated
invention machine.

o Genetic programming can automatically create
a general solution to a problem in the form of a
parameterized topology.

John R. Koza: GECCO 2007 Tutorial / Introduction to Genetic Programming
http://www.genetic-programming.org

Evolving Programs

Is it possible to create computer programs by
evolutionary means?

Let P(0) be a population of randomly generated
programs p;

For each p,, run it on some input and see what it
does. Rate it for fithess based on how well it does.
Breed the fitter members of P(0) to produce P(1)
If happy with the behaviour of the best program
produced then stop.

... but how?

How?

What language should the candidate programs be expressed
In?

C, Java, Pascal, Perl, Lisp, Machine code?

How can you generate an initial population?

How can you run programs safely? Consider errors, infinite
loops, etc.?

How can you rate a program for fithess?

Given two selected programs, how can they be bred to create
offspring?

What about subroutines, procedures, data types, encapsulation,
etc.

What about small, efficient programs?

Koza: evolving LISP programs

f(x,y) is written (f x y)

Lisp: functional language: 10 "3 |) is written (— 10 (+ 3 4))

Lisp programs can be represented as trees:

flr)=a*+3 flx)=(+ (x « x) 3)
f(x) =
;_./’ +\| .
N Here, + and =« are function symbols (non-
terminals) of arity 2, « and 3 are terminals.
* A \°/ Given a random bag of both, we can make
L programes.
X (X)

Random Programs and Closure

+ 0
If we generate a random program: 3 X
How can we avoid an error?
if
> X y

Another random program: X 3

How can we evaluate this? All function calls return a result - closure.

Defaults: Choose a reasonable set of symbols, ignore arguments,
double arguments, return max_n etc.

Fithess Cases

« How do we rate a program for fithess?

« Answer: run it on some “typical” input data for which
we know what the output should be. The hope is the
evolved program will work for all other cases.

y=f(x) Input: x oY, Output (supposed)
0 5 5
1 6 9
2 13 24
4 69 157
8 517 4079

16 4101 405

Fitness: how close does p; get to these perfect values?

Fithess Function

For the fitness function we could use

raw = Zﬁtuess cases (;P; — Y |
. 1
adjusted =
1 4+ raw
: adjusted,
normalised = — :
> jadjusted

where /are the fithess cases, so most fitis 1, least fit is O.

Crossover

How can we cross two programs? subtree crossover

X Y X X 2 2

Koza's original (1988-92) GP system used only crossover, to try to demonstrate
that GP is “more than mutation”

Mutation

subtree or "grow"
mutation

How can we mutate a program?

Lots of other forms of mutation 3) (x
are possible, e.g. hoist, shrink

shrink: replace a subtree by one of its terminals
hoist: use only a subtree as a mutant

or: vary numbers, exchange symbols, exchange subtrees, ...

GP Algorithm

1. Choose a set of functions and terminals for the program you
want to evolve:
® non-terminals e.g.: if, /,*, +, —, sqrt, <, >...
® terminalse.g.:x,y,-10,-9,..., 9,10

2. Generate an initial random population of trees of maximum
depth d

3. Calculate the fitness of each program in the population using
the chosen fithess cases.

4. Apply selection, subtree crossover (and subtree mutation) to
form a new population.

Example parameter values: population size = 10000
crossover rate = 0.9

Selection: Fitness proportionate

GP Example

Symbolic regression on planetary orbits (Kepler’s law). Given a
set of values of independent and dependent variables, come up
with a function that gives the values of the dependent variables in
terms of the values of the independent variables.

Planet A P
Venus 0.72 0.61
Earth 1.00 1.00
Mars 1.52 1.84
Jupiter 5.20 11.9
Saturn 9.53 294

Uranus 19.1 83.5

Kepler's third law: Square of the period P of the planet
proportional to cube of semimajor axis A (P = A32).

Learning to Plan

A planning problem (Koza): Koza's data set:

Initial state: 166 fitness cases

— different initial states
— same final state

—|>» | C | Z

S R V E

Goal state: a single stack that spells out the word "UNIVERSAL"

Aim:
To find a program to transform any initial state into “UNIVERSAL

Learning to Plan

Terminals:

CS - returns the current stack’s top block

TB — returns the highest correct block in the stack (or NIL)
NN — next needed block, i.e. the one above TB in the goal

Functions:

MS(x) — move block x from table to the current stack.
Return T if does something, else NIL.

MT(x) — move x to the table

DU(exp1, exp2) — do exp1 until exp2 becomes TRUE
NOT(exp1) — logical not

EQ(exp1, exp2) — test for equality

Planning Results

Generation 0: (EQ (MT CS) NN)
O fitness cases
Generation 5: (DU (MS NN) (NOT NN))
10 fithess cases
Generation 10:
(EQ (DU (MT CS) (NOT CS))
(DU (MS NN) (NOT NN)))
166 fithess cases

Koza shows how to amend the fitness function for efficient,
small programs: combined fithess measure rewards
correctness AND efficiency (moving as few blocks as
possible) AND small number of tree nodes (parsimony)

The Santa Fe Trall

Obijective:

To evolve a program which eats all the food on a trail
without searching too much when there are gaps in the trail.
Sensor can see the next cell in the direction it is facing

Terminals: MOVE, LEFT, RIGHT
Functions: IF-FOOD-AHEAD, PROGN2, PROGN3

Program:

(if-food-ahead move
(progn3 left
(progn2 (if-food-ahead move right)
(prognZ2 right (progn2 left right)))
(progn2 (if-food-ahead move left)
move)

)
)
Fitness: amount of food collected in 400 time steps (say).

GP: a practical example

11111

Camera’ \\

AREEN]
1T

Low-resolution
- —-- colour image
e.g. 16x16

') Conveyor belt

¥

Image statistics, e.g.

! AREA of outline
Grad ing lettuces . . Uses Enarouine
proprietary form of GP, by Evis GP jots DARKEST colour
: . system of LIGHTEST colour

Technologies GmbH, Vienna. training D of distribution of colours
after examples
much

Much faster and more accurate testing

than humans. A function that outputs

the grade of lettuce: A, B or C

GP: Some Other Examples

* Predicting electricity demand (suppliers can buy from
each other

» Generation of financial trading rules

* Designing new electronic circuits

« Data mining: Creating functions that “fit” well to data
« Controllers for simulated creatures, predator-prey

see: http://www.genetic-programming.org
http://www.geneticprogramming.us

Open Questions/Research Areas

» Scaling up to more complex problems and larger programs
 Using large function and terminal sets.
* How well do the evolved programs generalise?
* How can we evolve nicer programs?
— size
— efficiency
— correctness
* What sort of problems is GP good at/ not-so-good at?
* How does GP work? etc.

Reading

. J. Koza 1990, especially pp 8-14, 27-35, 42-43
(paper linked to web page)

Outlook

« More Genetic Programming

Evolving neural networks for control

Grammars and Robotics

e Grammatical encoding of the linkage matrix (here for XOR)
0 1 1

N >
O @
LW W N
Lo L O T
O L L L
o w O W
OO OC OO ook
OO OC O OOk
O O O O O ==
OO O Ok O
O O O OO o oo
O O O O oo oo
O O O O oo oo
_ O O Ok = OO

(SABCD|Acpac|Baaae...)

Generate linkage matrix from the grammar. If at the end of rewriting there are
still non-terminal nodes, that node is “dead” — not connected.

e Develop chromosome (genotype) into network (phenotype) and train for fixed
no. of training episodes.

e Fitness = error at end of training

Problems with direct encoding

Fixed connections: as size of matrix grows, chromosome size grows
Can't encode repeated patterns, esp. with internal structure

Takes a long time to generate high-performing networks

Advantages of grammatical encoding

Can represent large connectivity matrices in compact form
Shorter encoding, faster search

Variable topologies including recurrent connections

Better on encoder/decoder problem than direct encoding

Evolving Neural Network Behaviours

Previous examples rely on trawning data
What if we haven't got any?

Example: a neural network which controls a mobile agent which is trying to
achieve some goals in a dynamic environment.

No good example of behaviour is available; or we wish to try a range of possible
behaviours to see which is best.

A fitness function is available based on goal achievement.

Evolving Neural Network Behaviours

General approach:

e Decide on how to represent inputs to and outputs from the neural network.

e Decide on a neural network architecture: might need to try a range of
possibilities.

e Decide on a simulation which tests the NN's behaviour.
e Decide on a fitness function which tests how well the NN did in the simulation.

e All the usual GA stuff: chromosome representation, crossover, mutation,
population size, etc.

Example: Evolving Communication

This is an example from Artificial Life: the study of computer generated “life”
forms. (Matthew Quinn, University of Sussex)

e Khepera robots controlled by evolved neural networks

e Group task: robots move together as far as possible — like dancing

e 38 sensor nodes, 4 motor nodes, hidden nodes

e Evolved thresholds, weights, decay parameters, size, connectivity of network

e Co-evolution: select two robots from population, rate them for fitness as a
par

e |nitial result: leaders and followers emerge

e Only get a working pair 50% of the time, BUT....

Example: Evolving Communication

e After a while a new single species emerges

e T[his behaviour uses communication based on simple movement:

— both agents (A and B) rotate anti-clockwise

— one agent (B) becomes aligned first and moves towards the other agent

— agent B moves backward and forward while staying close to A

— when A becomes aligned, it becomes the leader: it reverses its direction and
is followed by B

e Very similar to movement communication used in social insects (e.g. dancing
in honey bees)

	Recent Progress in Evolution Theory
	Overview
	Evolutionary algorithms
	Multidimensional mutations in ES
	Nested Evolution Strategy
	Genetic Programming
	Evolving Programs
	How?
	Koza: evolving LISP programs
	Random Programs and Closure
	Fitness Cases
	Fitness Function
	Crossover
	Mutation
	GP Algorithm
	GP Example
	Learning to Plan
	Learning to Plan
	Planning Results
	The Santa Fe Trail
	GP: a practical example
	GP: Some Other Examples
	Open Questions/Research Areas
	Reading
	Outlook
	Evolving neural networks for control

