Genetic Algorithms and Genetic Programming

Lecture 7: (16/10/09)

Evolutionary algorithms (in Robotics)

f

School of
in

ormatics

Michael Herrmann

michael.herrmann@ed.ac.uk, phone: 0131 6 517177, Informatics Forum 1.42

Overview

Introduction: History
'he genetic code

1.

2

3. The canonical genetic algorithm
4. Examples & Variants of GA
5. The schema theorem
6. Hybrid algorithms

7

8

. Evolutionary robotics -

. GP

Hybrid GA: Evolving Neural Networks

e Reminder of neural networks
e Evolving weights

e Evolving network topology

<

e Grammars, robotics
e Evolving intelligent behaviours

e Example: evolving communication

Evolving Topology 1
— choosing a network topology is hard

— can it be done automatically?
Miller, Todd and Hegde (1989):

from unit: 1 2 3 4 § 1 |
to unit: 1 0 0 0 0 O |
2.0 0 0 00 T commec < earmabi
3 1 2?2 ?2 2?2 2 ? = you complete the table
4 1 7 7 7 7
5 0 7?2 7?2 7 7

Chromosome: 00000 00000 ... (complete the rest...) Mutation: bit flipping

Crossover: exchange whole rows Limit to feedforward networks: any
links to input units or feedback connections are ignored.

Evolving Topology 2

Tasks tried by Miller et al.:

(a) XOR (exclusive - OR)
(b) four quadrant: 100 @ @ (1.1)

(x,y) — 0.0 if 2,y = 0.0 or @,y ~1.0 00 @ @ (0,1
(X,Y) — 1.0 otherwise
(c) pattern copying, with units in the hidden layer < number of input units
Learning: back-propagation

Results: GA can easily find network topologies for these problems.

But are the problems too easy?
See Stanley and Miikkulainen (2002) for a more sophisticated approach (NEAT)

NEAT Neuro-Evolution through Augmenting
Topologies

e Evolve by changing the connection weights, turning links on and off, and also
by adding nodes and links (in the mutation stage)

Start off simple, become more complex — as complex as needed — complexification

If a node is added it is added in the middle of an existing link

e Crossover: need to match up parts of the network coding for similar traits.

Competing conventions: permuting a network doesn't change the outputs or
the function computed by the network

So: give each gene an innovation number — the next unused integer when it
iIs made. So can match up parts of networks inheriting this gene in future
generations.

NEAT Neuro-Evolution through Augmenting
Topologies

Inherit matching genes from each parent with equal probability. Inherit non-
matching genes from fittest parent.

e Can also split into species based on difference between chromosomes (based
on number of matching genes and other metrics). Preserves new topology for a
while so that it has a chance to optimise its structure only in competition with
similar members.

e Works well on pole-balancing. Also applied to game of GO.

See Kenneth O. Stanley and Risto Miikkulainen. Evolving neural networks through
augmenting topologies. Evolutionary Computation 10, 99-127 (2002)

Risto Miikkulainen
Kenneth O. Stanley

Evolutionary Computation 10(2): 99-127

Species

i
o

R

=i
L

)
=3

b}
oo

Generations

5

[A.B.C]
X[C.B.A]

Crossovers: [A.B.A] [C.B.C] »

{both are missing information)
On using “Innovation numbers”

28

Figure 7: Visualizing speciation during a run of the double pole balancing with veloc-
ity information task. Two species begin to close in on a solution soon after the 20th
generation. Around the same time, some of the oldest species become extinct.

Evolving Neuromodules for Control

force_cart /10
2 b i ang_pole
'-\ f \ |,‘ '| loc_cart —
\ S | / \
2k |
N \ \
kY N L
1 A= A
N A /1N
i / .
7 ™ =
1 / \\ -
~ f \
2 [{
f \- I 1
J Y \
-3 {
time [s]
-4
b) 0 2 4 [8 10 12

Figure 1: a.) A minimal 4t-class solution w!' and b.) its effective control: x(t),

0(t), and F(t) starting from zy = 2.0 and 6y = 7.

40

a0 P

20

oo b

e

-40

b)

Figure 5: a.) The 2t-controller w® solving the swinging-up problem, and b.) cart
position and pole angle under its action, starting from xy = 0, 6, = .

F. Pasemann et al. (1999) Evolving structure and function of neurocontrollers. MIS preprint

Evolutionary Computation

« Formalization of GA

« Fourtypes of EC: GA, GP, EP, ES
« Simple evolutionary strategies (ES)
. Self-adapting ES

. Nested ES

« Applications of EC

Beyond the Schema theorem: Formalization of GAs

« Canonical GA, binary encoding, fithess proportional selection,
only one offspring from each crossover

« Search space indexed by i=0,..., 2¢-1, ¢€: string length

* p/(t) proportion of the population consisting of string i

» S((t) probability that j is selected as a parent

* ry(k) probability that k is produced by crossover of /i and j
» f; (fitness of |) is used as a matrix F;=f, and F;=0 for i#f

Fp

(1) =
Z F;ip; (1)
J=0

S(t+1) =Gs(t) <> P(t+1)=G,(p(1)) o aatons

GA Operator composed of operators for selection, mutation etc.
Further details in Mitchell p. 139, Whitley tutorial p. 79

pk(t+1) ZSI J Ij(k)

Vose, M. and Liepins, G. (1991). Punctuated equilibria in genetic search. Complex Systems, 5, 31-44.

Results of the Formalization

« Operator formalism:
Operators for selection, mutation, crossover

» Dynamical systems formulation:
Iteration, fixed points, stability
Assumes infinite populations

« Finite-population theory: Markov chains

o Statistical mechanics approach: Assume a
particular ("Boltzmann”) selection scheme:

Prediction of “macroscopic” properties of GA
(Shapiro, Prugel-Bennet, 1994)

Evolutionary algorithms

genotype mutation/ phenotype
(encoding) crossover (applied to)
Genetic strings of binary or |e.g. 1-point optimization or
algorithm iInteger numbers for both with | search of optimal
Py Py solutions
Genetic strings of binary or |e.g. 1-point computer programs
programming | integer numbers for both with | for a computational
Py Py problem

Evolutionary
programming

real numbers

mutation with
self-adaptive
rates

parameters of a
computer program
with fixed structure

Evolution
strategy

real numbers

mutation with
self-adaptive
rates

optimization or
search of optimal
solutions

Evolution Strategies

* |. Rechenberg, H.-P. Schwefel (1970s)
* Population-based real-valued optimisation

» Self-adaptation of (mutation) parameters standard:
iIndividuals contain problem-dependent code and
parameters of the algorithms (e.g. mutation rates)

 Learning of correlations between mutation rates

* On the other hand: “greedy” selection and simple
recombination (e.g. by averaging the parents)

» nested (hierarchical) algorithms [island algorithms]
« “"comma” and “plus” variants [without or with elitism]

Evolution Strategies

y =argopt,, f(y), yeR’
Canonical ESs: (p/p,A\)-ES or (W/p+A)+ES
U: populations size after selection (potential parents)
p: number of parents (mixing number) p < u

A: number of offspring (population size)

,comma“ selection: new population is selected
deterministically from the offspring p < A

,plus” selection: new population is selected
deterministically from the parent generation
and the offspring p < A (similar to elitism)

http://www.scholarpedia.org/article/Evolution_strategies

—

Self-Adaptation Evolution Strategy

. Initialize parent population P, ={a,, ,a }, each consisting of (y,s)

Generate A offspring a’ forming the offspring population P,’={a,’, ,a,’}
where each offspring a’ is generated by:

a. Select (randomly) p parents from P,

(if p=p take all parental individuals instead).

b. Recombine the p selected parents a to form a recombinant individual r.

c. Mutate the strategy parameter set s of the recombinant r.

d. Mutate the objective parameter set y of the recombinant r using the
mutated strategy parameter set to control the statistical properties of
the object parameter mutation.

Select new parent population (using deterministic truncation selection)
from either

1.the offspring population P,’ (this is referred to as comma-selection,
usually denoted as (M, A)-selection), or

2.the offspring P,” and parent P, population (this is referred to as
plus-selection, usually denoted as (u+A) -selection)

Goto 2. until termination criterion fulfilled.

http://www.scholarpedia.org/article/Evolution_strategies

Genetic operators: Mutations

yi(t) = xi(t) + z

z values drawn from normal
distribution N(§,o)

mean § is setto O

variation o is called mutation step
size

c is varied on the fly by the

“1/5 success rule’: N

This rule resets ¢ after every k
iterations by

c=oc/c ifps>1/5

c=oc°cC ifps<1/5

c=oc ifps=1/5

where p, is the % of successful
mutations, 0.8 <c <1

The one dimensional case

0.50F T]

0.40 |

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing. Evolution Strategies

Multidimensional mutations in ES

Uncorrelated mutation with one & Uncorrelated mutation with L c;’s Correlated mutations

Correlated mutations: y=x+4(0,C)
x stands for the vector (x,,...,x,)

C’ is the covariance matrix C
after mutation of the g values

A.E. Eiben and J.E. Smith, Introduction to Evolutionary Computing. Evolution Strategies

Nested Evolution Strategy

o Hills are not independently distributed (hills of hills)

. Find a local maximum as a start state

« Generate 3 offspring populations (founder populations)
that then evolve in isolation

« Local hill-climbing (if convergent: increase diversity of
offspring populations)

« Select only highest
population

« Walking process from
peak to peak within an
“ordered hill scenery”
named Meita-Evolution

. Takes the role of
crossover in GA

http://www.bionik.tu-berlin.de/intseit2/xs2mulmo.html

Evolutionary Robotics

« What are robots? Possible answer: interfaces between
computers and the real world

o Evolution of controllers

http://www.youtube.com/watch?v=ehno85yl-sA
http://www.youtube.com/watch?v=jMyVbFDzxes

. Hardware evolution is an option:

- Evolvable hardware: Modular robots
http://www.youtube.com/watch?v=AljzMszshVM

- The Golem project
http://www.youtube.com/watch?v=sLtXXFw_q8c

- Overview by
K.C. Tan, L.F. Wang, T.H. Lee, P. Vadakkepat: Evolvable

Hardware in Evolutionary Robotics. Aufonomous Robots 2004

Evolutionary Robotics by Stefano Nolfi and Dario Floreano. ISBN 0-262-14070-5

Evolving neural networks for control

Grammars and Robotics

e Grammatical encoding of the linkage matrix (here for XOR)
0 1 1

N >
O @
LW W N
Lo L O T
O L L L
o w O W
OO OC OO ook
OO OC O OOk
O O O O O ==
OO O Ok O
O O O OO o oo
O O O O oo oo
O O O O oo oo
_ O O Ok = OO

(SABCD|Acpac|Baaae...)

Generate linkage matrix from the grammar. If at the end of rewriting there are
still non-terminal nodes, that node is “dead” — not connected.

e Develop chromosome (genotype) into network (phenotype) and train for fixed
no. of training episodes.

e Fitness = error at end of training

Problems with direct encoding

Fixed connections: as size of matrix grows, chromosome size grows
Can't encode repeated patterns, esp. with internal structure

Takes a long time to generate high-performing networks

Advantages of grammatical encoding

Can represent large connectivity matrices in compact form
Shorter encoding, faster search

Variable topologies including recurrent connections

Better on encoder/decoder problem than direct encoding

Evolving Neural Network Behaviours

Previous examples rely on trawning data
What if we haven't got any?

Example: a neural network which controls a mobile agent which is trying to
achieve some goals in a dynamic environment.

No good example of behaviour is available; or we wish to try a range of possible
behaviours to see which is best.

A fitness function is available based on goal achievement.

Evolving Neural Network Behaviours

General approach:

e Decide on how to represent inputs to and outputs from the neural network.

e Decide on a neural network architecture: might need to try a range of
possibilities.

e Decide on a simulation which tests the NN's behaviour.
e Decide on a fitness function which tests how well the NN did in the simulation.

e All the usual GA stuff: chromosome representation, crossover, mutation,
population size, etc.

Example: Evolving Communication

This is an example from Artificial Life: the study of computer generated “life”
forms. (Matthew Quinn, University of Sussex)

e Khepera robots controlled by evolved neural networks

e Group task: robots move together as far as possible — like dancing

e 38 sensor nodes, 4 motor nodes, hidden nodes

e Evolved thresholds, weights, decay parameters, size, connectivity of network

e Co-evolution: select two robots from population, rate them for fitness as a
par

e |nitial result: leaders and followers emerge

e Only get a working pair 50% of the time, BUT....

Example: Evolving Communication

e After a while a new single species emerges

e T[his behaviour uses communication based on simple movement:

— both agents (A and B) rotate anti-clockwise

— one agent (B) becomes aligned first and moves towards the other agent

— agent B moves backward and forward while staying close to A

— when A becomes aligned, it becomes the leader: it reverses its direction and
is followed by B

e Very similar to movement communication used in social insects (e.g. dancing
in honey bees)

Evolving Robots Learn To Lie To Each Other

Omnidirectional

-
i 8L
¥

_Ground
sensors

Tracks

Fig. 1. Experimentalsetup. (A) A food and poison source, both emitting red
light, are placed 1 m from one of two opposite corners of the square (3- x 3-m)
arena. Robots (small circles) can distinguish the two by sensing the color of the
circles of paper placed under each source by using their floor sensors when
driving over the paper. (B) The robot used for the experiments is equipped
with two tracks to drive, an omnidirectional (360°) vision camera, a ring of
lights used to emit blue light, and floor sensors to distinguish food and poison
sources (see ref. 14 for details).

1,000 robots divided into 10 groups
Each robot had a sensor, a blue light,
and a 264-bit binary genome encoding
a controller

initial population: turn the light on at
food resource, supporitng also other
robots

positive fithess points for finding and
sitting at the good resource, negative for
being near the poison

200 fittest robots are selected,
recombined and mutated

Near optimal fitness after 9 generations
A limited amount of food results in
overcrowding

o After 500 generations: 60 % of the robots kept their light off near food
« Other robots adapted to this and developped an aversion to the light

Sara Mitria, Dario Floreano and Laurent Keller (2009) The evolution of information
suppression in communicating robots with conflicting interests. PNAS

Outlook

» Genetic and Evolutionary programming

	Overview
	Evolving Neuromodules for Control
	Evolutionary Computation
	Beyond the Schema theorem: Formalization of GAs
	Results of the Formalization
	Evolutionary algorithms
	Evolution Strategies
	Self-Adaptation Evolution Strategy
	Multidimensional mutations in ES
	Nested Evolution Strategy
	Evolutionary Robotics
	Evolving neural networks for control
	Evolving Robots Learn To Lie To Each Other
	Outlook

