Genetic Algorithms and Genetic Programming

Lecture 6: (13/10/09)

Hybrid algorithms

f

School of
in

ormatics

Michael Herrmann

michael.herrmann@ed.ac.uk, phone: 0131 6 517177, Informatics Forum 1.42

© NO Ok W=

Overview

Introduction: History
he genetic code

'he canonical genetic algorithm
Examples & Variants of GA
The schema theorem

Hybrid algorithms <

Evolutionary robotics
GP

crossover rate: 0 (top curve) to 1 (somewhere at the bottom)

10000 = T

| zerg Initialization (red), randon (qreen) -

2 1000 b ._
5
L

100 |]

S e

mutation rate

Number of generations required to discover the optimal solution
Strings of 20 characters ¢={0,1}, P=100, f(c) = Z ¢, ("all-ones” problem)
Initialization: a) ¢=0 with prob. 2 and c=1 otherwise or b) c=(0,...,0)

The Schema Theorem

a(H,t)
f(t)

Em(H,t+1)) >m(H,t)

(1 — Pe

d(H)
1

[

(1 =)]

Schema Theorem in words: short, low-order, above average schemata receive
exponentially increasing trials in subsequent generations of a genetic algorithm.

Beyond the schema theorem:
« How do schemata arise?

Constructive role of mutation and crossover
« Mean fitness changes if more fit individuals are around
Other ways to change the fithess?
« Which genes belong to a good schema®?
The algorithm does not easily distinguish
important genes from “hitchhikers”

When Do GAs Do Better Than Hill-climbing?

To act like an ideal GA and outperform hill-climbing (at least in this sort of
landscape) need

e Independent samples: big enough population, slow enough selection, high
enough mutation, so that no bit-positions are fixed at same value in every
chromosome

e Keeping desired schemas: strong enough selection to keep desired schemas but
slow enough selection to avoid hitch-hiking

e \We want crossover to cross over good schemas quickly when they're found to
make better chromosomes (but we don't want crossover to disrupt solutions)

e Large N/long string so speedup over RMHC is worth it.

Not possible to satisfy all constraints at once — tailor to your problem

Where Now?

Schema theorem starts to give us an idea of how GAs work but is flawed —
need better mathematical models of GA convergence . . .

... but these better models don't make our GA go faster. Can we fix it
empirically? Fix what, exactly?

1. Standard GA finds good areas, but lacks the killer instinct to find the
globally best solution

2. Standard crossover often disrupts good solutions late in the run

3. Binary representations of non-binary problems often slow the GA down
rather than allowing it to sample more freely. The “Hamming CIliff".

Aim is to shift balance from exploration at start to exploitation at end.

The Killer Instinct and Memetic Algorithms

Hill-climbing local neighbourhood search is a fast single solution method which

quickly gets stuck in local optima (cf. SAHC, NAHC)

Genetic algorithms are a multi-solution technique which find good approximate
solutions which are non-local optima

Hence: try applying local search to each member of a population after
crossover/mutation has been applied. We might find locally better solutions,
and if near the end of run find the best/optimal solution

GA + LS = Memetic Algorithm

Evolution theory

Jean Baptist Lamarck: First truly cohesive theory of
evolution [Inheritance of acquired characters] (around 1800)

Charles Darwin: Natural selection
(On the Origin of Species, 1859)

Herbert Spencer: Survival of the fittest
(Principles of Biology, 1864)

1866: Gregor Mendel: Rules of inheritance in pea plants
1905: “"Genetics” (William Bateson)
1953: DNA structure (Crick and Watson)

1977 virus genome, 2003 Human genome (99%)

The Baldwin effect

« “A new factor in evolution” (James Baldwin, 1896)

« Selection for learning ability (rather than relying only on
fixed abilities from the genes)

 Increased flexibility: Robustness to changes in the
environment (i.e. changes of the fitness function)

« Learning has a cost:

- If learning of the same tasks increases fitness over many
generations then those individuals have a relatively higher
fitness that produce (parts of) these results by their
genetically fixed abilities

« Selective pressure may lead to a translation of learned
abilities into genetic information!

Computational study: Hinton & Nowlan: How learning can guide evolution (1987)
(see M. Mitchell, Chapter 3)

Memetic Algorithms

» 1st generation: Hybrid algorithms

- evolutionary algorithm + local refinement
(development and learning)

. 2nd generation: Hyper-heuristic MA (Lamarckian)

- includes evolution of the learning algorithm(s) by
selection of memes

. 3rd generation: Co-evolution, self-generating MA

- co-adaptation of the representation of memes
including discovery of new memes

Hybrid GA: Evolving Neural Networks

e Reminder of neural networks
e Evolving weights

e Evolving network topology

e Grammars, robotics

e Evolving intelligent behaviours

e Example: evolving communication

Neural Networks

Inspired by working of neurons in the brain
Universal function approximators

Used widely in machine learning

Empirical predictive modelling

Often used for Classification

Robotic controllers — input to network from sensors, output from network to
motors

Basic Properties of Neural Networks

Nodes and connections

Weights attached to the connections

Firing (output from node) depends on inputs to the node

Nodes calculate the weighted sum of their inputs

Activation threshold function

Input/hidden/output layers. Each layer is fully connected to the next
Feedforward vs. recurrent networks

Training: back propagation

A Simple Feedforward Neural Network

output y1 ‘ sigmoid{weighted sum of inputs)

weighted sum of inputs x1Tw1 + x2w2

weight w11 | weight w21

Input nodes do unit transformation

y.

Input x1 Input x2

Each node (apart from input nodes) takes the weighted sum of its inputs, and
feeds this sum through a sigmoid function:

1

1+ e %

Y = where u; = Yw;,x;

A Typical Feedforward Neural Network

output pattern

output i .
~__ bias
weight
corrections e
hidden (back— AT A activation
propagation) .
input

input pattern

Input, hidden and output nodes. Output from bias nodes is 1.

Learning procedure: use a training set of <input, output> pairs.
Present input, try to adjust weights to reduce the difference between the network’s

output and the desired output — backpropagation algorithm (Rumelhart et al.
1986)
— supervised learning procedure

Evolving Weights

e evolve the weights rather than train the network directly
e as an alternative to back-propagation

Montana and Davis (IJCAI 1989) looked at:

— underwater sonic recordings (features, preprocessed)

— treated as a classification problem (whales, enemy subs)

— network topology
4 input nodes

7 nodes in hidden layer 1 fully connected
10 nodes in hidden layer 2 18 extra thresholding connections (biases)
1 output node total weights 126

— GA chromosome: a list of 126 real-valued weights

Represent the Weights on a Chromosome

03 . -04
4 5
/o8 % o7
ay 2 3

Chromosome: (0.3,-0.4, 0.2, -0.3, 0.7, 0.8, -0.1, -0.3)
Building blocks: all incoming weights to a given unit seems plausible.

Mutation: for each link coming in to the chosen node, add a (different) random
value between +1.0 and -1.0

Crossover: for each non-input node, choose all the weights from Parent 1 or all
the weights from Parent 2. (Montana-Davis crossover)

Egmr of

best network
Results of
012 L
Weight Evolution 0.09]
0.06 LT Iterations
2k 4k 6k 8k 10k GA——
BP.eeoe. _

Reward function: how well the actual network output matches the training output
over the training set

e GA were better than BP for some tasks

e ‘unsupervised’ learning — we're not changing a single network to be more likely

to produce the right output, we're evaluating a network then throwing it away
and producing the next generation

e good if sparse reinforcement available, e.g. if network controls a robot moving
in unfamiliar environments — we may only need it to work in some parts of the

input/output space, i.e. those actually experienced. So we evaluate its fitness
as a controller in just those bits of the environment where we need to run it

e backpropagation doesn't work well if subsequent inputs are correlated, so GA
may be better

Evolving Topology 1
— choosing a network topology is hard

— can it be done automatically?
Miller, Todd and Hegde (1989):

from unit: 1 2 3 4 § 1 |
to unit: 1 0 0 0 0 O |
2.0 0 0 00 T commec < earmabi
3 1 2?2 ?2 2?2 2 ? = you complete the table
4 1 7 7 7 7
5 0 7?2 7?2 7 7

Chromosome: 00000 00000 ... (complete the rest...) Mutation: bit flipping

Crossover: exchange whole rows Limit to feedforward networks: any
links to input units or feedback connections are ignored.

Evolving Topology 2

Tasks tried by Miller et al.:

(a) XOR (exclusive - OR)
(b) four quadrant: 100 ®@ @ (1.,1)

(x,y) — 0.0 if 2,y ~0.0 or z,y = 1.0 00 @ @ (0,1)
(X,¥Y) — 1.0 otherwise
(c) pattern copying, with units in the hidden layer < number of input units
Learning: back-propagation

Results: GA can easily find network topologies for these problems.

But are the problems too easy?
See Stanley and Miikkulainen (2002) for a more sophisticated approach (NEAT)

NEAT Neuro-Evolution through Augmenting
Topologies

e Evolve by changing the connection weights, turning links on and off, and also
by adding nodes and links (in the mutation stage)

Start off simple, become more complex — as complex as needed — complexification

If a node is added it is added in the middle of an existing link

e Crossover: need to match up parts of the network coding for similar traits.

Competing conventions: permuting a network doesn't change the outputs or
the function computed by the network

So: give each gene an innovation number — the next unused integer when it
iIs made. So can match up parts of networks inheriting this gene in future
generations.

NEAT Neuro-Evolution through Augmenting
Topologies

Inherit matching genes from each parent with equal probability. Inherit non-
matching genes from fittest parent.

e Can also split into species based on difference between chromosomes (based
on number of matching genes and other metrics). Preserves new topology for a
while so that it has a chance to optimise its structure only in competition with
similar members.

e Works well on pole-balancing. Also applied to game of GO.

See Kenneth O. Stanley and Risto Miikkulainen. Evolving neural networks through
augmenting topologies. Evolutionary Computation 10, 99-127 (2002)

Grammars and Robotics

e Grammatical encoding of the linkage matrix (here for XOR)
0 1 1

N >
O @
LowoWw 0O
L L O T
O L W
o w D w
O o oo oo
OO OO OOk
O O O O O ==
OO Ok O
OO O OO oo oo
O O O oo o oo
O O O oo o oo
_ O O Ok = OO

(SABCD|Acpac|Baaae...)

Generate linkage matrix from the grammar. If at the end of rewriting there are
still non-terminal nodes, that node is “dead” — not connected.

e Develop chromosome (genotype) into network (phenotype) and train for fixed
no. of training episodes.

e Fitness = error at end of training

Problems with direct encoding

Fixed connections: as size of matrix grows, chromosome size grows
Can't encode repeated patterns, esp. with internal structure

Takes a long time to generate high-performing networks

Advantages of grammatical encoding

Can represent large connectivity matrices in compact form
Shorter encoding, faster search

Variable topologies including recurrent connections

Better on encoder/decoder problem than direct encoding

Evolving Neural Network Behaviours

Previous examples rely on trawning data
What if we haven't got any?

Example: a neural network which controls a mobile agent which is trying to
achieve some goals in a dynamic environment.

No good example of behaviour is available; or we wish to try a range of possible
behaviours to see which is best.

A fitness function is available based on goal achievement.

Evolving Neural Network Behaviours

General approach:

e Decide on how to represent inputs to and outputs from the neural network.

e Decide on a neural network architecture: might need to try a range of
possibilities.

e Decide on a simulation which tests the NN's behaviour.
e Decide on a fitness function which tests how well the NN did in the simulation.

e All the usual GA stuff: chromosome representation, crossover, mutation,
population size, etc.

Example: Evolving Communication

This is an example from Artificial Life: the study of computer generated “life”
forms. (Matthew Quinn, University of Sussex)

e Khepera robots controlled by evolved neural networks

e Group task: robots move together as far as possible — like dancing

e 38 sensor nodes, 4 motor nodes, hidden nodes

e Evolved thresholds, weights, decay parameters, size, connectivity of network

e Co-evolution: select two robots from population, rate them for fitness as a
par

e |nitial result: leaders and followers emerge

e Only get a working pair 50% of the time, BUT....

Example: Evolving Communication

e After a while a new single species emerges

e T[his behaviour uses communication based on simple movement:

— both agents (A and B) rotate anti-clockwise

— one agent (B) becomes aligned first and moves towards the other agent

— agent B moves backward and forward while staying close to A

— when A becomes aligned, it becomes the leader: it reverses its direction and
is followed by B

e Very similar to movement communication used in social insects (e.g. dancing
in honey bees)

	Overview
	The Schema Theorem
	Evolution theory
	The Baldwin effect
	Memetic Algorithms

