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The Canonical GA: Short Overview

Repeat
eEvaluate fitness
eSelect intermediate population
eDo crossover or reproduction
eDo mutation

Until solutions good enough
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The Canonical GA: Overview

Evaluation function F' gives a score f; to each individual solution 1.

If f is the average evaluation over the whole population of N individuals, then

the fitness of i is f;/f
Roulette Wheel
Probability of selection of solution with evaluation f; is f; /Y fi selection

This is the step that most people get wrong in exams:

Select two parents at random from the intermediate population. Apply crossover

with probability p., with probability 1 — p. copy the parents unchanged into the
next generation — reproduction.

Crossover: from the 2 parents create 2 children using 1-point, 2-point, n-point
crossover. Select crossover point uniform-randomly:

Mutation: take each bit in turn and with Prob(mutation) = p,,, flip it
(0 — 1, 1 — 0). p,, < 0.01 usually. Note that the probability p,, is applied
differently from p..

This is one generation. Do for many generations, till solutions are optimal or
good enough.



The “Philosophy” of GA

« Encoding: Create a space of solutions

« Fitness function: Discriminate good from bad solutions

o Initialization: Start with good candidate solutions

. Selection: Prefer better solutions to worse ones

« Recombination: Combine parental traits in a novel manner
. Mutation: Creating individual traits by random local search
« Termination: Comparing achieved and achievable fithess

How do the simple mechanisms create something useful when combined?
« Selection + Mutation = Continual improvement

o Selection + Recombination = Innovation

From David E. Goldberg: The design of innovation: lessons from and for competent genetic algorithms.



Variants of GAs

o Selection:

- Roulette wheel (see last lecture)

- Tournament selection (select a pair and keep two copies of the better one)
- Elitism (best individuals are moved unchanged to the next generation)

- Insertion of a few new random individuals in each generation

. Crossover:
- 1-point, 2-point, ..., n-point

— cut and splice (a different cutting point in each of the parents, children of
different length)

- half-uniform crossover scheme (exactly half of the nonmatching bits are
swapped)

- more than two parents; islands (crossover mostly within groups)
. Mutation:

~ point mutation: flip or random
- exchange two randomly chosen characters (perhaps coupled mutations)

Inversion
- fitness-dependent, adaptive mutation rates etc.



Termination of a GA

The generational process Is repeated until a termination condition
has been reached, e.qg.

« A solution is found that has optimal fithess

. Fitness indicates a sufficient improvement over alternative
algorithms

« Fixed number of generations reached
. Allocated budget (computation time/money) reached

. The fithess of the highest ranking solution is reaching or has
reached a plateau such that successive iterations no longer
produce better results

. The diversity of the population has vanished
« Combinations of the above
« Decide: really finish or restart a variant of the GA on the same task

must read: http://en.wikipedia.org/wiki/Genetic_algorithm



Tournament selection vs. Roulette Wheel selection

« Roulette Wheel selection (see last lecture)

- may be used on (raw) fithess values or rank

- chance of survival in a single run qor rank i): p=(2i)/(n?+n)
(at least one from n runs P=1-(1-p)" for the first variant)

- best (rank n): p=2/(n+1), worst (rank 1): p=2/(n%+n)
- roulette wheel with elitism is fairly similar to tournament
« Tournament selection (n winners from n tournaments)

- chance of survival depends on rank [selection for
tournament may also depend on rank]

- P=(-1)/(n-1)

- best (rank n) individual beats any other: P=1

- worst (rank 1) P=0

- outcome of a tournament may be stochastic (add elitism)

- main advantage: Can be used Iif fitness function cannot be
calculated explicitly, e.g. in the evolution of chess players

- better parallelizable
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Example: Function Optimization

Minimise Rastrigin's Function:
f(x) =10+ 2?2 — 10cos(27x), —=5.12 < x < 5.12
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Representation: binary strings

T = Tmin + 0(Tmar — Tonin)/ (27 — 1)
So for 8-bit strings
r=—5.12+b(5.12 — —5.12) /(2% — 1)
If b = 10011001 then this represents

the integer 153, so
r=—5.12+ (153 x 10.24/255) = 1.024

Solution: z = 0.0201 f(x) = 0.0799 rather than: =0, f(z) =0 Why?

More on this example:
search for “Rastrigin” at www.mathworks.com, www.obitko.com/tutorials/genetic-algorithms/
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Search spaces as Hypercubes

Binary encoding: solution “c” in {0,1}"

e.g. ¢=(0,1,0) for L=3 or c=(0110) for L=4
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Schemata (J. Holland, 1975)

All (inheritable) features of the phenotype are encoded by
schemata

A schema is a string that contains wildcards (“*”)

The order of the schema Is the number of bits that are
actually there

E.g. **01***1 I1s a schema of order 3 (and length 8)
each chromosome is a corner of the hypercube

There are 3t-1 different schemata
(not counting the schema of order 0:  ** ... *)

each chromosome is part of 2--1 hyperplanes

Implicit parallelism: Each individual samples many
hyperplanes



Binary encoding
of a 1-D variable

Fitness of a schema
IS the average over
the corresponding
hyperplane (or rather
the sample across
the population)

Sampling of the
hyperplanes is
essentially
unaffected by
local optima

From: Whitley, 1992
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How Do GAs Work?

The Schema Theorem

w(H,t I(H
Blm(H.t + 1) = 2D HA0 = pop =0 o))
(s, t) fitness at time ¢ of solution s;

m(s;, t) is the number of copies of s; in the population at time t
f(t) is the average fitness of the population at time t

j(qiﬁt)
ij(sj?t)

E(m(s;,t+1)) =m(s;,t) P P denotes the population size

* -.";.hf
E/(-) is the expected value Zi)(fz-ﬁ‘,p)ﬂ is the probability of selecting s;




Writing 3, f(s;,t)/ P as f(t)

E(m(si, t +1)) = m(si, t)f Skl

proportion of the population that is s;

T '-'E'.ﬁt 4 '—'iqt
Prop(s;.t + 1) = m(si, )f(_q 1)

P j0

So above-average-fitness strings get more copies in the next generation and
below-average-fitness strings get fewer.

Suppose s; has, and continues to have, an above-average-fitness of (1 + ¢)f.
Then for ¢c>0

E(m(s;,t+1)) =m(s;.t)—= Y = (1 +c¢)m(s;.t)

If we have m(s;,0) copies at t = 0, then we have m(s;,t) = (1 + ¢)"m(s;,0)
—this gives exponential growth — and decay for ¢ < 0.
—So fit solutions come to dominate



Fithess of Schemata

If solutions s;, s;, s; all sample the same schema I, we can calculate the
average fitness u of H from the fitnesses of the m solutions that sample it:

> f(si) f(s5), f(sk), -
Uit = m(H,1)

Given m(H.t) and @u(H,t), can we calculate m(H,t + 1)?

u(H,t) is the average fitness of H at time ¢
m(H,t) is the number of instances of H at time ¢
f(t) is the average fitness of the population at time ¢

How many instances of H will be present in P after selection?

Proportion:
m(H,t)u(H,t)

Prop(H) = 2 0




first component of the Schema Theorem

after P spins:  E(m(H,t+1)) =m(H, t)ﬂgt_%';)

other parts of the Schema Theorem:

Defining length is the distance d(H) between the first and last bits

of the schema
11**110%* defining length 6

([(H) ¥k % %1 10% defining length 2
Pr(surviving crossover) = 1 — p,. _ |
[—1 [ : total string length
Pr(surviving mutation) = (1 — p,,)°*?)
w(H,t d(H
E(TTI(H t+ 1)) — TTI(H t) IF]L(ZL) )(1 — pC%) [(1 — pm)O(H)] (?)



The Schema Theorem

schemata can be created through crossover and mutation. So we need a >.

- - aH. O, dH)
B(m(H, ¢ +1)) zm(H.)—=(1 = pg—)[(1 = pm) ]

Highest when e u(H.t) is large — fit
e d(H) is small — short

e o(H) is small — small number of defined bits

Schema Theorem in words: short, low-order, above average schemata receive
exponentially increasing trials in subsequent generations of a genetic algorithm.



Outlook

More examples

Implications of the schema theorem
Criticism of the schema theorem
Hybrid algorithms
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