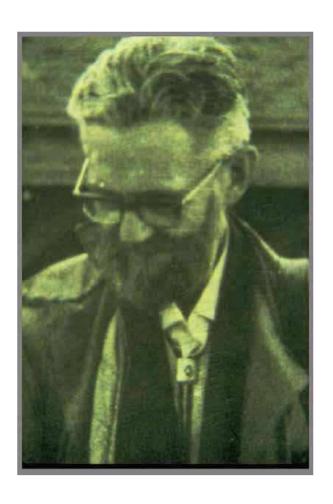
Genetic Algorithms and Genetic Programming

Michael Herrmann

Lecture 1: Introduction (25/9/09)

Problem Solving at Decreasing Domain Knowledge

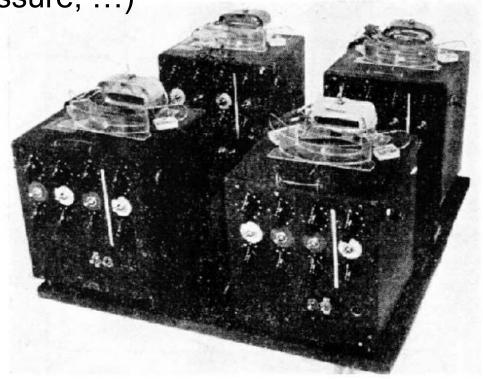
- Direct calculation, straight-forward recipe
- Solution by analogy, generalization
- Cartesian method, divide and conquer
- Iterative solution, continuous improvement
- Genetic algorithms, "suggestive" trial and error
- Random guessing

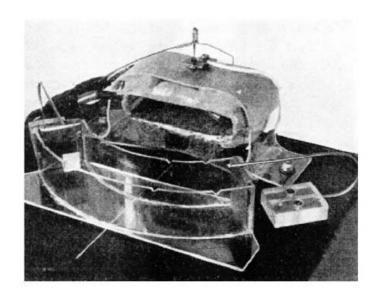

Paralipomena

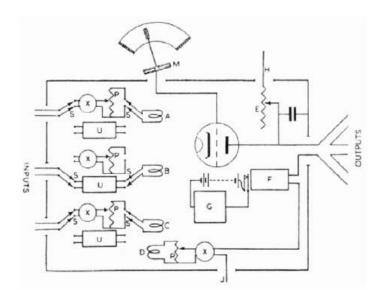
- Theory of natural evolution
- Genetics, genomics, bioinformatics
- The Philosophy of Chance (Stanislaw Lem, 1968)
- Memetics (R. Dawkins: The Selfish Gene, 1976)
- Neural Darwinism -- The Theory of Neuronal Group Selection (Gerald Edelman, 1975, 1989)
- (artificial) Immune systems
- Individual learning
- Computational finance, markets, agents

Prehistory of GA W. Ross Ashby (1903-1972)

- Design for a brain (1952, 2nd edition 1960)
- ► An introduction to cybernetics (1956)

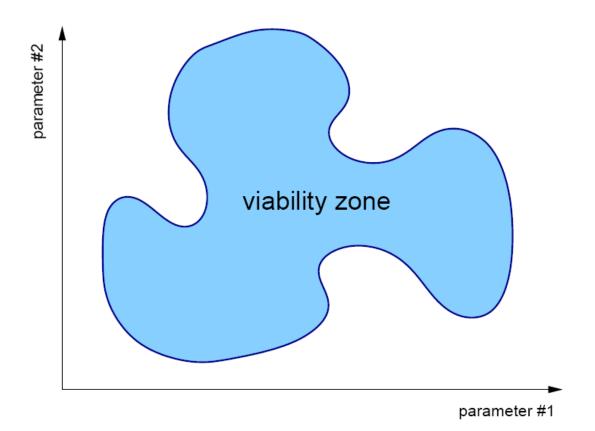





"who when asked what he wished done with his voluminous unpublished research notes responded characteristically with: 'Destroy it all' (to give the next generation a chance for rediscovery)"

Ashby's Homeostat

Was conceived as an implementation of regulatory mechanisms in living beings (body temperature, blood pressure, ...)



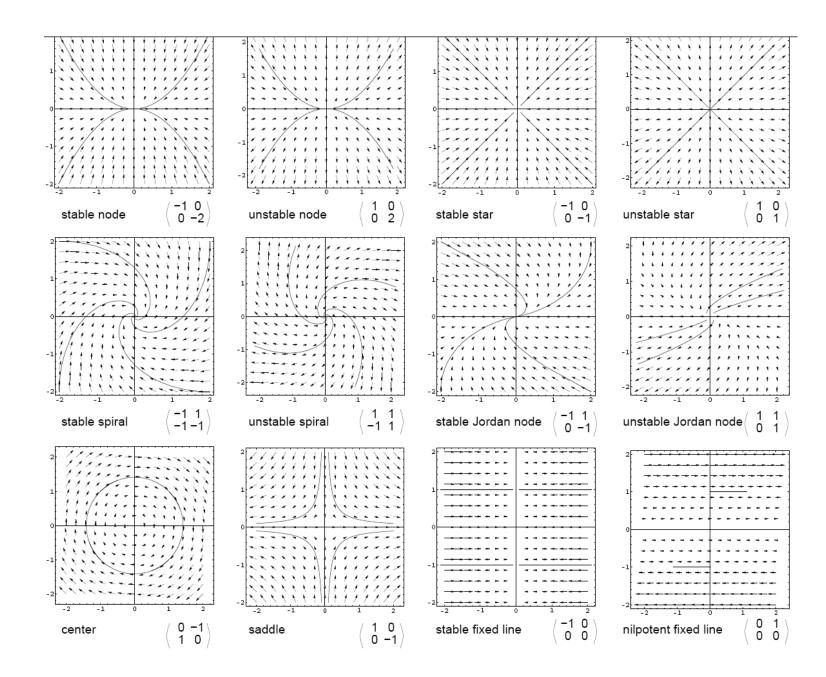
Essential variables

strongly linked to survival

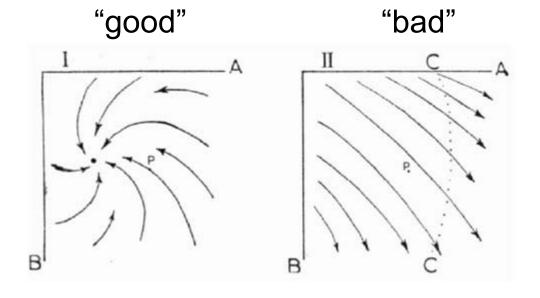
Ashby's Homeostat

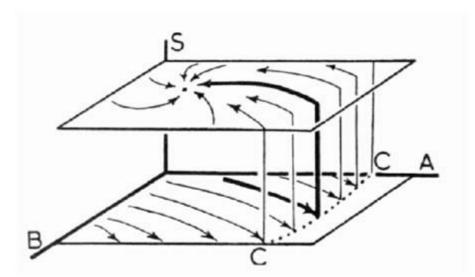
according to Zemanek & Hauenschild

$$\begin{pmatrix} \dot{x}_1 \\ \dot{x}_2 \\ \dot{x}_3 \\ \dot{x}_4 \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} & a_{14} \\ a_{21} & a_{22} & a_{23} & a_{24} \\ a_{31} & a_{32} & a_{33} & a_{34} \\ a_{41} & a_{42} & a_{43} & a_{44} \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{pmatrix}$$

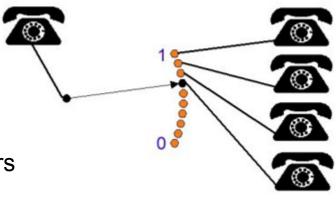

- ▶ stability if all eigenvalues of $\{a_{ij}\}$ have negative real parts
- ▶ if not: x_i reaches the critical surfaces $|x_i| = \theta = \frac{\pi}{4}$
- ightharpoonup switching of a_{ij} for $j \neq i$ (3 entries)
- $a_{ij} \in \{0, \pm 0.48c, \pm 0.73c, \pm 0.89c, \pm c\}, i \neq j, (a_{ii} < 0)$
- ▶ 9³ combinations per variable (only 25 used)
- ▶ total: $25^4 = 390625$ different dynamical behaviors

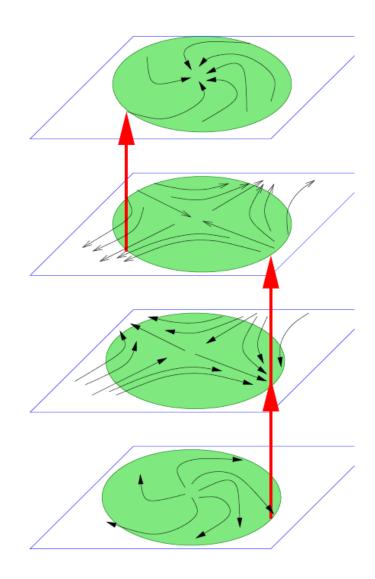
Different choices of the interaction matrix


$$A=\{a_{ij}\}$$

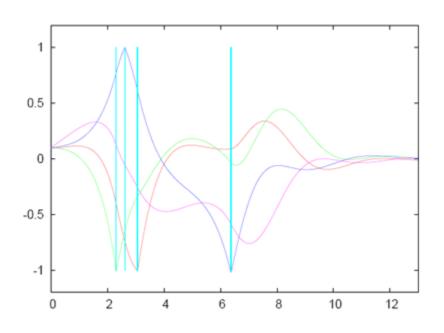

produce a lot of different effects

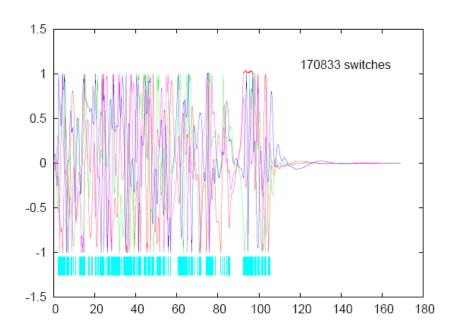
as implied by the 2D examples:


Switching dynamics



Implementation of switching in the homeostat




Choose different dynamics by selecting different parameters

- ► The switching process stops if the coefficients cause all eigenvalues have negative real parts
- As the reverse of the sign of an a_{ij} , the system returns via a large unpredictable deviation in state space
- For random couplings, negativity of all eigenvalues is realized only with probability 2^{-n}

Discrete/Continous Dynamics of the Homeostat

Switching events (cyan) until stabilization for a homeostat with 4 elements (left) and 10 elements (right)

Translation: Homeostat → GA

Homeostat	Genetic algorithm
Parameters {a _{ij} }	Genetic code
Viability	Fitness
Dynamics	Determination of fitness
Partial re-selection of new parameters	Mutation
	Recombination

Experimental contour optimization of a supersonic flashing flow nozzle

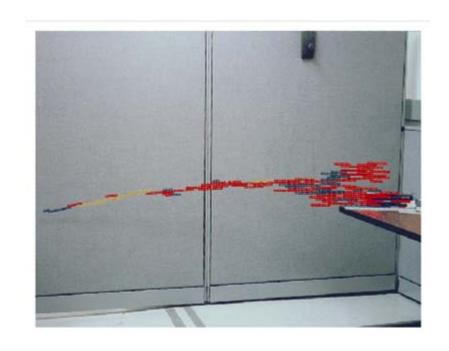
(1967-1969)

Hans-Paul Schwefel

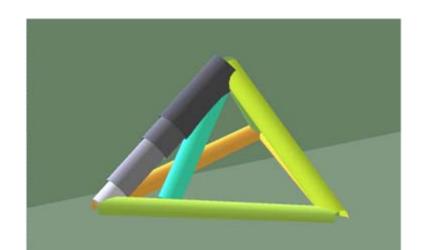
Start

Evolution

Result



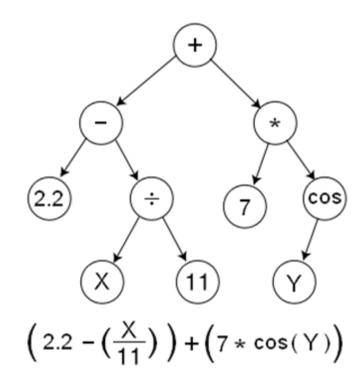
Genetic Algorithms


- global search heuristics
- technique used in computing
- find exact or approximate solutions to optimization problems

Applications in

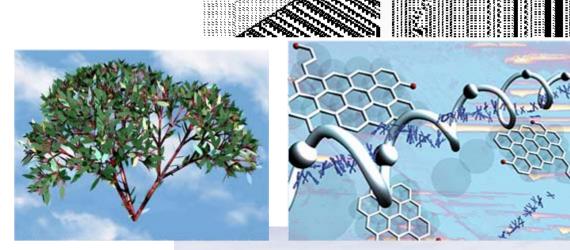
- Bioinformatics
- Phylogenetics
- Computational science
- Engineering
- Robotics
- Economics
- Chemistry
- Manufacturing
- Mathematics
- Physics

The Golem Project

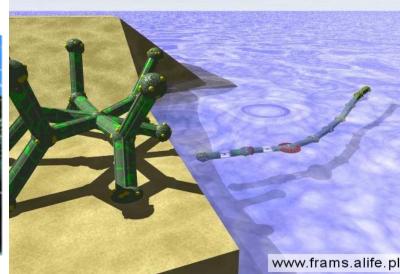

Hod Lipson & Jordan B. Pollack (2000)

Genetic Programming (GP)

- Evolutionary algorithm-based methodology inspired by biological evolution
- Finds computer programs that perform a user-defined task
- Similar to genetic algorithms (GA) where each individual is a computer program
- Optimize a population of computer programs according to a fitness landscape determined by a program's ability to perform a given computational task.



Evolutionary Computation (EC)


- Genetic algorithms: Solution of a problem in the form of strings of numbers using recombination and mutation
- Genetic programming: Evolution of computer programs
- Evolutionary programming: Like GP, but only the parameters evolve
- Evolution strategies: Vectors of real numbers as representations of solutions

Natural Computation (NC)

- Evolutionary Computation
- Artificial immune systems
- Neural computation
- Amorphous computing
- Ant colony optimization
- Swarm intelligence
- Harmony search
- Cellular automata
- Artificial life
- Membrane computing
- Molecular computing
- Quantum computing

Particular emphasis on:

- Optimization, optimization, optimization
- Evolutionary robotics
- Relation between artificial and natural evolution
- Using background knowledge: Encoding and construction of fitness functions
- Natural computing

Problem Solving as Optimization

Choosing the best option from some set of available alternatives

- Minimize energy, time, cost, risk, ...
- Maximize gains, acceptance, turnover, ...
- Discrete cost:
 - admissible goal state: maximal gain
 - anything else: no gain
- Secondary costs for:
 - acquisition of domain knowledge
 - testing alternatives
 - doing nothing
 - determining costs

Syllabus

- Part 1: Introduction
 - Introduction to Genetic Algorithms: an example
 - Genetic Algorithms: biological inspiration
- Part 2: Genetic Algorithms (GAs)
 - The canonical genetic algorithm
 - The schema theorem and building block hypothesis
 - Formal analysis of genetic algorithms
 - Methodology for genetic algorithms
 - Designing real genetic algorithms

Syllabus (continued)

- Part 3: Optimisation Problems
 - Solving optimisation problems
 - Swarm intelligence: ant colony optimisation (ACO)
 - Adding local search: hybrid GAs and hybrid ACO
 - Other methods: simulated annealing, tabu search
- Part 4: Evolving Programs and Intelligent Agents
 - Evolving programs: genetic programming
 - Evolving controllers: neural networks and robots
 - Evolving intelligence: agents that play games
 - Evolving intelligence: programs that can plan

- Tuesday & Friday 15:00 15:50 at AT LT2
- Reading: From supplied course notes and set book (An Introduction to Genetic Algorithms by Melanie Mitchell, MIT Press 1998, available on amazon.com, also available on MIT CogNet) – see Informatics library website See http://www.lib.ed.ac.uk/resbysub/info/ebooks.shtml
- Two assignments: the first one unmarked the second one marked and worth 25% of the course mark, to be handed in at the end of Week 5 and the end of Week 10.
- Exam: worth 75% of the course mark, taken at the end of Semester 2 (for visiting students: end of S1)
- michael.herrmann@ed.ac.uk
 phone: 0131 6 517177, Informatics Forum 1.42

Tutorials

- Mondays
 - group 1: 16:10-17:00 (AT 5:03)
- Tuesdays
 - group 2: 13:05-13:55 (AT 5.07)
- Wednesdays
 - group 3: 12:10-13:00 (AT 5.03)
 - group 4: 12:10-13:00 (AT 5:07)
 - group 5: 13:05-13:55 (AT 5:03)
 - group 6: 13:05-13:55 (AT 5:07)