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Particle Swarm Optimization II



Overview
I. GA (1-7)
II. GP (8-10)
III. ACO (11-13): Ant colony optimization
IV. PSO (14-15): Particle swarm optimization

and differential evolution
V. NC (16): Overview on DNA computing, Membrane computing, 

Molecular computing, Amorphous computing, Organic computing, ….
VI. Wrapping up: Metaheuristic search (17)

Not included: 
artificial neural networks, quantum computing, cellular automata, 
artificial immune systems



The canonical PSO algorithm
For each particle 

create random vectors 

update velocities

update positions

update local bests

update global best

]1,0[, 21 Urr  from drawn componentswith

( ) ( )gfxfxg ii ˆˆ <← if

iii vxx +←

,1 ni ≤≤

( ) ( )iiiii xgrxxrvv −+−+← ˆˆ 2211 oo ααω

( ) ( )iiii xfxfxx ˆˆ <← if

tionmultiplica
isecomponentwo

minimization
problem!

,m
ix R∈ m

iv R∈

global bestpersonal bestinertia



Analysis of PSO: Simplified algorithm

Consider a single particle only (“the view from inside”)
Ignore randomness (use a homogeneous mean value)
Ignore the global best (assume it equals personal best)
Keep the personal best constant (changes are rare)
Set inertia to unity (for the moment only)
i.e. what we had (vector equation of i-th particle)

becomes now (in component form: d=1,…,m  with          )
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Algebraic point of view
Introduce yt=p-xt

Introduce state vector  Pt=(vt,yt)T and

Starting from the initial state P0  we have Pt=MtP0 
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M. Clerc & J. Kennedy (2002) The particle swarm – Explosion, stability, and convergence in a 
multidimensional complex space. IEEE Transactions on Evolutionary Computation 7:1, 58-73.



Algebraic point of view
Eigenvalues of                            i.e. 

Transformation matrix:
Pt+1=MPt

Thus             Qt=LtQ0                   where 
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3 Cases:

EV complex EV real

Exponent.
divergent

(convergent
with con-
striction)

Both EV are -1

Some algebra implies:
Linear divergence
(unless starting
with the eigenvector V)

Oscillatory with 
period k:
(or quasiperiodic)
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Implications from the algebra
Oscillation for ϕ<4: Exploration near current best
Divergence for ϕ>4: Exploration of the wider environment
ϕ=α1+α2 is a combination of the attractiveness of the 
personal and global best. Since these might be not the 
same, a slightly larger ϕ might be needed.
ϕ slightly above 4 (e.g. 4.1): particle stays somewhere in 
between or near personal and global best. If these two 
coincide the algorithm tends to diverge, i.e. the particle 
moves on searching elsewhere.
Divergence can be counteracted by Vmax or by constriction.
Remember that we were considering an averaged version 
of the algorithm.



Object Tracking in Computer Vision




Applications
Evolving structure and weights of neural networks
Complex control involving complex and continuous 
variables (power systems)
Industrial mixer in combination with classical 
optimization
Image analysis
Medical diagnosis
Job scheduling
Robot path planning, localization
Electrical generator 
Electrical vehicle



Repulsive PSO algorithm
For each particle 

create m-dimensional random vectors 

update velocities

update positions etc.

Usually applied alternating with canonical PSO 
if diversity becomes too small
Properties: sometimes slower, more robust and efficient
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Fully Informed Particle Swarm (FIPS)
Rui Mendes (2004): Simpler, maybe better
Distributes total φ across n terms
All neighbors 
contribute to the 
velocity adjustment
Best neighbor is 
not selected, but
included with a
Individual not 
included 
in neighborhood
Fails often, but, if successful, results are good, 
(stongly dependent on good topology)



Parameters, Conditions, & Tweaks
Initialization methods
Population size
Population diameter
Absolute vs. signed velocities
Population topology
Births, deaths, migration
Limiting domain (XMAX, VMAX)
Multiobjective optimization
“Subvector” techniques
Comparison over problem spaces
Hybrids

Jim Kennedy
Russ Eberhart: 
Tutorial on Particle
Swarm Optimization

IEEE Swarm 
Intelligence 
Symposium 2005
Pasadena, California 
USA, June 8, 2005



Remarks on PSO

Consider boundaries as physical (e.g. by 
reflection from walls)
Try adaptive versions: variable swarm size, 
variable ratios α1/α2

Try different topologies (e.g. “tribes”)
For local variants, consider using other norms in 
high-dimensional spaces (Euclidean unit sphere 
volume decays)



Relation to probabilistic methods
Strict probabilistic methods are based on assumtions
(Gaussianity, optimal sampling etc.) which often do not 
hold in practical applications
There are many examples where meta-heuristic 
approaches do well

− Toy examples are often designed ad-hoc for a particular 
method and are thus unsuitable for a fair comparison. 

− Success in real-world examples depends much on domain 
knowledge, quality of analysis, iterative re-design etc.

Meta-heuristic algorithms may use strict algorithms for 
local search
Meta-heuristic algorithms can be used to initialize, 
adapt, optimize or tune the “exact” algorithms



Particle filters
Given observations Yk;   reconstruct true states Xk

Represent posterior distribution by N weighted samples 
obtained from                     : 

Problems: impoverishment and sample size effects
(if the likelihood is concentrated at the tail of the prior
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G. Tong, Z. Fang, X. Xu (2006) A PS optimized PF for non-linear system state estimation. 
Proc. Congress on Evolutionary Computation, 438-442.



PSO PF

Use PSO for sampling 
Standard PSO with Gaussian randomness in 
the  velocity update (“Gaussian swarm”)
fitness
Rk: observation covariance
modulate weights: 
Now represent posterior by weighted samples
Avoids divergence and does well with less particles.
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Comparison of GA and PSO
Generally similar:

1. Random generation of an initial population
2. Caclulate of a fitness value for each individual. 
3. Reproduction of the population based on fitness values. 
4. If requirements are met, then stop. Otherwise go back to 2.

Modification of individuals 
− In GA: by genetic operators
− In PSO: Particles update themselves with the internal velocity. They also 

have memory.
Sharing of information 

− Mutual In GA. Whole population moves as a group towards optimal area. 
− One-way in PSO: Source of information is only gBest (or lBest). 

All particles tend to converge to the best solution quickly. 
Representation

− GA: discrete
− PS: continuous

www.swarmintelligence.org/tutorials.php



Differential Evolution
NP D-dimensional parameter vectors
xiG; i = 1, 2, . . . , NP;   G: generation counter 
Mutation: viG+1 = xr1G + F * (xr2G -xr3G);
F in [0,2] amplification of the differential variation
ri random indexes different from I   (“rnbr”)
Crossover:

randb in [0,1]
Selection: xiG+1=uiG+1 if uiG+1 is better, otherwise xiG+1=xiG

Rainer Storn & Kenneth Price (1997) Differential Evolution – A Simple and Efficient Heuristic for 
Global Optimization over Continuous Spaces. Journal of Global Optimization 11: 341–359, 



Differential 
Evolution



DE: Details
Properties

Simple, very fast

Reasonably good results

Diversity increases in flat regions 
(divergence property)

Parameters 
NP=5D (4 … 10D)

F=0.5 (0.4 …. 1.0)

CR=0.1  (0 … 1.0)



DE: Variants

e.g. best/2



The General Scheme
1. Use populations of solutions/trials/individuals
2. Transfer information in the population from the best 

individuals to others by selection+crossover/attraction
3. Maintain diversity by adding noise/mutations/

intrinsic dynamics/amplifying differences
Avoid local minima (leapfrog/crossover/more noise/ 
subpopulations/border of instability/checking success)

4. Store good solutions in memory as best-so-far/iteration 
best/individual best/elite/pheromones

5. Whenever possible, use building blocks/partial 
solutions/royal road functions

6. Use domain knowledge and intuition for encoding, 
initialization, termination, choice of the algorithm

7. Tweak the parameters, develop your own variants



It is thanks to these eccentrics, 
whose behaviour is not conform to 
the one of the other bees, that  all
fruits sources around the colony are 
so quickly found.

Karl von Frisch 1927
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Ecological niche

PSO Mini Tutorial on Particle Swarm Optimisation (2004) Maurice.Clerc@WriteMe.com



Literature on swarms
Eric Bonabeau, Marco Dorigo, Guy Theraulaz: Swarm 
Intelligence: From Natural to Artificial Systems (Santa Fe 
Institute Studies on the Sciences of Complexity) (Paperback) 
OUP USA (1999) 
J. Kennedy, and R. Eberhart, Particle swarm optimization, in 
Proc. of the IEEE Int. Conf. on Neural Networks, Piscataway, 
NJ, pp. 1942–1948, 1995. 
Y Shi, RC Eberhart (1999) Parameter selection in particle 
swarm optimization. Springer.
Eberhart Y. Shi (2001) PSO: Developments, applications 
ressources. IEEE.

www.engr.iupui.edu/~eberhart/web/PSObook.html
Tutorials: www.particleswarm.info/
Bibliography: icdweb.cc.purdue.edu/~hux/PSO.shtml

http://www.particleswarm.info/

	Overview
	The canonical PSO algorithm
	Analysis of PSO: Simplified algorithm
	Algebraic point of view
	Algebraic point of view
	Implications from the algebra
	Object Tracking in Computer Vision
	Applications
	Repulsive PSO algorithm
	Fully Informed Particle Swarm (FIPS)
	Parameters, Conditions, & Tweaks
	Remarks on PSO
	Relation to probabilistic methods
	Particle filters
	PSO PF
	Comparison of GA and PSO
	Differential Evolution
	DE: Details
	DE: Variants
	The General Scheme
	Ecological niche
	Literature on swarms

