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Particle Swarm Optimization



Overview
I. GA (1-7)
II. GP (8-10)
III. ACO (11-13): Ant colony optimization
IV. PSO (14-15): Particle swarm optimization

and differential evolution
V. NC (16): Overview on DNA computing, Membrane computing, 

Molecular computing, Amorphous computing, Organic computing, ….
VI. Wrapping up: Metaheuristic search (17)

Not included: 
artificial neural networks, quantum computing, cellular automata, 
artificial immune systems



Relation to other algorithms: 
Model-Based Search

E.g. in ACO:

Model: 
pheromone matrix
Sample: 
ants following 
pheromone traces
Learning:
pheromone update

Auxilary memory:
best-so-far solution

Scheme of the MBS approach

MBS approach with memory

Zlochrin, Birattari, Meuleau, Dorigo: Model-based Search for Combinatorial Optimization: 
A Critical Survey. Annals of Operations Research 2004.



GA as MBS
Generate new solutions using the current probabilistic 
model
Replace (some of) the old solutions by the new ones.
Modify the model using the new population.



GA as MBS
Probabilistic simulation of a genetic algorithm with 
tournament selection
Probabilistic model of the population: individual are 
generated by biased draws based on a probability 
vector. E.g. if the vector entry pi is 0.9 it is likely to 
have a 1 at position i in this individual’s string.
Tournament selection: Choose two individuals a and b

The model is updated by

compact Genetic Algorithm 
(cGA) (Harik et al., 1999)



GA as MBS
Bits in the genome were chosen independently. What 
about schemata? 
Modeling dependencies between string positions e.g.

learning a chain distribution as in ACO starting at 
the first character of the string and setting the next 
one by a conditional probability
by a matrix of pair-wise joint frequencies
by a forest of mutually independent dependency 
trees

In order to capture the essential idea of GA (building 
blocks the probabilistic model must be different from 
the ACO model (i.e. the pheromone matrix + update)



Swarm intelligence
Collective intelligence: A super-organism
emerges from the interaction of individuals
The super-organism has abilities that are not 
present in the individuals (‘is more intelligent’)
“The whole is more than the sum of its parts”
Mechanisms: Cooperation and competition 
… and communication
Examples: Social animals, smart mobs, 
immune system, neural networks, internet, 
swarm robotics

Beni, G., Wang, J. Swarm Intelligence in Cellular Robotic Systems, Proc. NATO 
Adv. Workshop on Robots and Biological Systems, Tuscany, Italy, 26–30/6 (1989) 



Swarm intelligence: Application areas

Biological and social modeling
Movie effects
Dynamic optimization
− routing optimization 
− structure optimization
− data mining, data clustering

Organic computing 
Swarm robotics



Swarms in robotics and biology

• Robotics/AI
– Main interest in 

pattern synthesis
• Self-organization
• Self-reproduction
• Self-healing
• Self-configuration

– Construction

• Biology/Sociology
– Main interest in pattern 

analysis
• Recognizing best pattern
• Optimizing path
• Minimal conditions
• not “what”, but “why”

– Modeling

Dumb parts, properly connected into a swarm, yield smart results.
Kevin Kelly



Complex behaviour from simple rules

Rule 1: Separation
Avoid Collision with neighboring agents

Rule 2: Alignment
Match the velocity of neighboring agents

Rule 3: Cohesion
Stay near neighboring agents



Towards a computational principle

Evaluate your present position
Compare it to your previous best and 
neighborhood best
Imitate self and others

Hypothesis: There are two major sources of cognition, 
namely, own experience and communication from others.

Leon Festinger, 1954/1999, Social Communication and Cognition



Particle Swarm Optimization (PSO)
Methods for finding an optimal solution to an 
objective function
Direct search, i.e. gradient free
Simple and quasi-identical units
Asynchronous; decentralized control
‘Intermediate’ number of units: ~ 101-10<<23

Redundancy leads to reliability and adaptation
PSO is one of the computational algorithms in 
the field of swarm intelligence (the other is ACO)

J. Kennedy, and R. Eberhart, Particle swarm optimization, in Proc. 
of the IEEE Int. Conf. on Neural Networks, Piscataway, NJ, pp. 1942–1948, 1995. 



PSO algorithm: Initialization

Fitness function
Number of particles n = 20, …, 200
Particle positions
Particle velocities
current best of each particle
(“simple nostalgia”)
global best
(“group norm”)
initialize constants
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The canonical PSO algorithm
For each particle 

create random vectors 

update velocities

update positions

update local bests

update global best
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# Initialize the particle positions and their velocities
X = lower_limit + (upper_limit - lower_limit) * 

rand(n_particles, m_dimensions) 
assert X.shape == (n_particles, m_dimensions) 
V = zeros(X.shape) 

# Initialize the global and local fitness to the worst possible
fitness_gbest = inf
fitness_lbest = fitness_gbest * ones(n_particles) 
w=0.1           # omega range 0.01 … 0.7
a1=a2=2   # alpha range 0 … 4, both equal
n=25 # range 20 … 200
max velocity # no larger than: range of x per step

or 10-20% of this range

Initialization

Main loop (next page)



for k in range(0, T_iterations): # loop until convergence
fitness_X = evaluate_fitness(X) # evaluate fitness of each particle
for I in range(0, n_particles): # update local bests 

if fitness_X[I] < fitness_lbest[I]: 
fitness_lbest[I] = fitness_X[I] 
for J in range(0, m_dimensions): 

X_lbest[I][J] = X[I][J] 
min_fitness_index = argmin(fitness_X) # update global best 
min_fitness = fitness_X[min_fitness_index] 
if min_fitness < fitness_gbest: 

fitness_gbest = min_fitness
X_gbest = X[min_fitness_index,:] 

for I in range(0, n_particles): # update velocities and positions 
for J in range(0, m_dimensions): 

R1 = uniform_random_number() 
R2 = uniform_random_number() 
V[I][J] = (w*V[I][J] + 

a1*R1*(X_lbest[I][J] - X[I][J]) + a2*R2*(X_gbest[J] - X[I][J])) 
X[I][J] = X[I][J] + V[I][J] 

end J,I,k; end;



Marco A. Montes de Oca
PSO Introduction

Illustrative example



Repulsive PSO algorithm
For each particle 

create random vectors 

update velocities

update positions etc.

Properties: sometimes slower, more robust and efficient
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Introduced by Clerc (1999)
Simplest form:

May replace interia ω
Meant to improve convergence by an enforced decay 
(more about this later)

Constriction factor
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Topology

Topology determines with whom to compare and thus 
how solutions spread through the population
Traditional ones: gbest, lbest
Global version is faster but might converge to local 
optimum for some problems. 
Local version is a somewhat slower but not easy to be 
trapped into local optimum. 
Combination: Use global version to get rough 
estimate. Then use local version to refine the search. 



Innovative topologies
Specified by: 
Mean degree, clustering, heterogeneity etc.



Comparison of GA and PSO
Generally similar:

1. Random generation of an initial population
2. Caclulate of a fitness value for each individual. 
3. Reproduction of the population based on fitness values. 
4. If requirements are met, then stop. Otherwise go back to 2.

Modification of individuals 
− In GA: by genetic operators
− In PSO: Particles update themselves with the internal velocity. They also 

have memory.
Sharing of information 
− Mutual In GA. Whole population moves as a group towards optimal area. 
− One-way in PSO: Source of information is only gBest (or lBest). 

All particles tend to converge to the best solution quickly. 
Representation
− GA: discrete
− PS: continuous

www.swarmintelligence.org/tutorials.php



PSO as MBS

As in GA the “model” is actually a population (which 
can be represented by a probabilistic model)
Generate new samples from the individual particles of 
the previous iteration by random modifications
Use memory of global, neighborhood or personal best 
for learning



Literature on swarms
Eric Bonabeau, Marco Dorigo, Guy Theraulaz: Swarm 
Intelligence: From Natural to Artificial Systems (Santa Fe 
Institute Studies on the Sciences of Complexity) (Paperback) 
OUP USA (1999) 
J. Kennedy, and R. Eberhart, Particle swarm optimization, in 
Proc. of the IEEE Int. Conf. on Neural Networks, Piscataway, 
NJ, pp. 1942–1948, 1995. 
Y Shi, RC Eberhart (1999) Parameter selection in particle 
swarm optimization. Springer.
Eberhart Y. Shi (2001) PSO: Developments, applications 
ressources. IEEE.

www.engr.iupui.edu/~eberhart/web/PSObook.html
Tutorials: www.particleswarm.info/
Bibliography: icdweb.cc.purdue.edu/~hux/PSO.shtml

http://www.particleswarm.info/
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