
Genetic Algorithms and Genetic Programming

Michael Herrmann
michael.herrmann@ed.ac.uk, phone: 0131 6 517177, Informatics Forum 1.42

Lecture 14: (13/11/09)

Particle Swarm Optimization

Overview
I. GA (1-7)
II. GP (8-10)
III. ACO (11-13): Ant colony optimization
IV. PSO (14-15): Particle swarm optimization

and differential evolution
V. NC (16): Overview on DNA computing, Membrane computing,

Molecular computing, Amorphous computing, Organic computing, ….
VI. Wrapping up: Metaheuristic search (17)

Not included:
artificial neural networks, quantum computing, cellular automata,
artificial immune systems

Relation to other algorithms:
Model-Based Search

E.g. in ACO:

Model:
pheromone matrix
Sample:
ants following
pheromone traces
Learning:
pheromone update

Auxilary memory:
best-so-far solution

Scheme of the MBS approach

MBS approach with memory

Zlochrin, Birattari, Meuleau, Dorigo: Model-based Search for Combinatorial Optimization:
A Critical Survey. Annals of Operations Research 2004.

GA as MBS
Generate new solutions using the current probabilistic
model
Replace (some of) the old solutions by the new ones.
Modify the model using the new population.

GA as MBS
Probabilistic simulation of a genetic algorithm with
tournament selection
Probabilistic model of the population: individual are
generated by biased draws based on a probability
vector. E.g. if the vector entry pi is 0.9 it is likely to
have a 1 at position i in this individual’s string.
Tournament selection: Choose two individuals a and b

The model is updated by

compact Genetic Algorithm
(cGA) (Harik et al., 1999)

GA as MBS
Bits in the genome were chosen independently. What
about schemata?
Modeling dependencies between string positions e.g.

learning a chain distribution as in ACO starting at
the first character of the string and setting the next
one by a conditional probability
by a matrix of pair-wise joint frequencies
by a forest of mutually independent dependency
trees

In order to capture the essential idea of GA (building
blocks the probabilistic model must be different from
the ACO model (i.e. the pheromone matrix + update)

Swarm intelligence
Collective intelligence: A super-organism
emerges from the interaction of individuals
The super-organism has abilities that are not
present in the individuals (‘is more intelligent’)
“The whole is more than the sum of its parts”
Mechanisms: Cooperation and competition
… and communication
Examples: Social animals, smart mobs,
immune system, neural networks, internet,
swarm robotics

Beni, G., Wang, J. Swarm Intelligence in Cellular Robotic Systems, Proc. NATO
Adv. Workshop on Robots and Biological Systems, Tuscany, Italy, 26–30/6 (1989)

Swarm intelligence: Application areas

Biological and social modeling
Movie effects
Dynamic optimization
− routing optimization
− structure optimization
− data mining, data clustering

Organic computing
Swarm robotics

Swarms in robotics and biology

• Robotics/AI
– Main interest in

pattern synthesis
• Self-organization
• Self-reproduction
• Self-healing
• Self-configuration

– Construction

• Biology/Sociology
– Main interest in pattern

analysis
• Recognizing best pattern
• Optimizing path
• Minimal conditions
• not “what”, but “why”

– Modeling

Dumb parts, properly connected into a swarm, yield smart results.
Kevin Kelly

Complex behaviour from simple rules

Rule 1: Separation
Avoid Collision with neighboring agents

Rule 2: Alignment
Match the velocity of neighboring agents

Rule 3: Cohesion
Stay near neighboring agents

Towards a computational principle

Evaluate your present position
Compare it to your previous best and
neighborhood best
Imitate self and others

Hypothesis: There are two major sources of cognition,
namely, own experience and communication from others.

Leon Festinger, 1954/1999, Social Communication and Cognition

Particle Swarm Optimization (PSO)
Methods for finding an optimal solution to an
objective function
Direct search, i.e. gradient free
Simple and quasi-identical units
Asynchronous; decentralized control
‘Intermediate’ number of units: ~ 101-10<<23

Redundancy leads to reliability and adaptation
PSO is one of the computational algorithms in
the field of swarm intelligence (the other is ACO)

J. Kennedy, and R. Eberhart, Particle swarm optimization, in Proc.
of the IEEE Int. Conf. on Neural Networks, Piscataway, NJ, pp. 1942–1948, 1995.

PSO algorithm: Initialization

Fitness function
Number of particles n = 20, …, 200
Particle positions
Particle velocities
current best of each particle
(“simple nostalgia”)
global best
(“group norm”)
initialize constants

RR →mf :

nix m
i ,,1, K=∈R

ĝ

ix̂
niv m

i ,,1, K=∈R

2/1, αω

The canonical PSO algorithm
For each particle

create random vectors

update velocities

update positions

update local bests

update global best

]1,0[, 21 Urr from drawn componentswith

() ()gfxfxg ii ˆˆ <← if

iii vxx +←

ni ≤≤1

() ()iiiii xgrxxrvv −+−+← ˆˆ 2211 oo ααω

() ()iiii xfxfxx ˆˆ <← if

tionmultiplica
isecomponentwo

minimization
problem!

Initialize the particle positions and their velocities
X = lower_limit + (upper_limit - lower_limit) *

rand(n_particles, m_dimensions)
assert X.shape == (n_particles, m_dimensions)
V = zeros(X.shape)

Initialize the global and local fitness to the worst possible
fitness_gbest = inf
fitness_lbest = fitness_gbest * ones(n_particles)
w=0.1 # omega range 0.01 … 0.7
a1=a2=2 # alpha range 0 … 4, both equal
n=25 # range 20 … 200
max velocity # no larger than: range of x per step

or 10-20% of this range

Initialization

Main loop (next page)

for k in range(0, T_iterations): # loop until convergence
fitness_X = evaluate_fitness(X) # evaluate fitness of each particle
for I in range(0, n_particles): # update local bests

if fitness_X[I] < fitness_lbest[I]:
fitness_lbest[I] = fitness_X[I]
for J in range(0, m_dimensions):

X_lbest[I][J] = X[I][J]
min_fitness_index = argmin(fitness_X) # update global best
min_fitness = fitness_X[min_fitness_index]
if min_fitness < fitness_gbest:

fitness_gbest = min_fitness
X_gbest = X[min_fitness_index,:]

for I in range(0, n_particles): # update velocities and positions
for J in range(0, m_dimensions):

R1 = uniform_random_number()
R2 = uniform_random_number()
V[I][J] = (w*V[I][J] +

a1*R1*(X_lbest[I][J] - X[I][J]) + a2*R2*(X_gbest[J] - X[I][J]))
X[I][J] = X[I][J] + V[I][J]

end J,I,k; end;

Marco A. Montes de Oca
PSO Introduction

Illustrative example

Repulsive PSO algorithm
For each particle

create random vectors

update velocities

update positions etc.

Properties: sometimes slower, more robust and efficient

]1,0[,, 321 Urrr from drawn componentswith

0ˆ <2neighbor,randomaofbest αy

ni ≤≤1

() () zrxyrxxrvv iiiii ooo 332211 ˆˆ ωαααω +−+−+←

tionmultiplica
isecomponentwo

velocityrandom z

Introduced by Clerc (1999)
Simplest form:

May replace interia ω
Meant to improve convergence by an enforced decay
(more about this later)

Constriction factor

51,729.01.4

4,
42

2
212

. K

K

≈=⇒=

>+=
−−−

=

αϕ

ααϕ
ϕϕϕ

 prefactorsi.e.e.g.

where

() ()]ˆˆ[2211 iiiii xgrxxrvKv −+−+← oo ααω

Topology

Topology determines with whom to compare and thus
how solutions spread through the population
Traditional ones: gbest, lbest
Global version is faster but might converge to local
optimum for some problems.
Local version is a somewhat slower but not easy to be
trapped into local optimum.
Combination: Use global version to get rough
estimate. Then use local version to refine the search.

Innovative topologies
Specified by:
Mean degree, clustering, heterogeneity etc.

Comparison of GA and PSO
Generally similar:

1. Random generation of an initial population
2. Caclulate of a fitness value for each individual.
3. Reproduction of the population based on fitness values.
4. If requirements are met, then stop. Otherwise go back to 2.

Modification of individuals
− In GA: by genetic operators
− In PSO: Particles update themselves with the internal velocity. They also

have memory.
Sharing of information
− Mutual In GA. Whole population moves as a group towards optimal area.
− One-way in PSO: Source of information is only gBest (or lBest).

All particles tend to converge to the best solution quickly.
Representation
− GA: discrete
− PS: continuous

www.swarmintelligence.org/tutorials.php

PSO as MBS

As in GA the “model” is actually a population (which
can be represented by a probabilistic model)
Generate new samples from the individual particles of
the previous iteration by random modifications
Use memory of global, neighborhood or personal best
for learning

Literature on swarms
Eric Bonabeau, Marco Dorigo, Guy Theraulaz: Swarm
Intelligence: From Natural to Artificial Systems (Santa Fe
Institute Studies on the Sciences of Complexity) (Paperback)
OUP USA (1999)
J. Kennedy, and R. Eberhart, Particle swarm optimization, in
Proc. of the IEEE Int. Conf. on Neural Networks, Piscataway,
NJ, pp. 1942–1948, 1995.
Y Shi, RC Eberhart (1999) Parameter selection in particle
swarm optimization. Springer.
Eberhart Y. Shi (2001) PSO: Developments, applications
ressources. IEEE.

www.engr.iupui.edu/~eberhart/web/PSObook.html
Tutorials: www.particleswarm.info/
Bibliography: icdweb.cc.purdue.edu/~hux/PSO.shtml

http://www.particleswarm.info/

	Overview
	Relation to other algorithms: �Model-Based Search
	GA as MBS
	GA as MBS
	GA as MBS
	Swarm intelligence
	Swarm intelligence: Application areas
	Complex behaviour from simple rules
	Towards a computational principle
	Particle Swarm Optimization (PSO)
	PSO algorithm: Initialization
	The canonical PSO algorithm
	Illustrative example
	Repulsive PSO algorithm
	Constriction factor
	Topology
	Innovative topologies
	Comparison of GA and PSO
	PSO as MBS
	Literature on swarms

