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Ant Colony Optimization IIa



Overview: Remainder of the course
I. GA (1-7)
II. GP (8-10)
III. ACO (11-13): Ant colony optimization
IV. PSO (14-15): Particle swarm optimization

and differential evolution
V. NC (16): Overview on DNA computing, Membrane computing, 

Molecular computing, Amorphous computing, Organic computing, ….
VI. Wrapping up: Metaheuristic search (17)

Not included: 
artificial neural networks, quantum computing, cellular automata, 
artificial immune systems



ACO algorithm

loop over ants

set of valid solutions

init best-so-far solution

store valid solutions
update best-so-far



Best ant laying pheromone (global-best ant or, in some 
versions of ACO, iteration-best ant) encourage ants to 
follow the best tour or to search in the neighbourhood of 
this tour (make sure that τmin>0).
Local updating (the ants lay pheromone as they go along 
without waiting till end of tour). Can set up the evaporation 
rate so that local updating “eats away” pheromone, and 
thus visited edges are seen as less desirable, encourages 
exploration. (Because the pheromone added is quite small 
compared with the amount that evaporates.)
Heuristic improvements like 3-opt – not really “ant”-style
“Guided parallel stochastic search in region of best tour”
[Dorigo and Gambardella], i.e. assuming a non-deceptive 
problem.

Some general considerations



(i) Only the best ant adds pheromone trails (iteration best 
or best so far)

(ii) Minimum and maximum values of the pheromone are 
explicitly limited (by truncation):

Pseudorandom 
proportional rule:

Initialize by maximum
(minimum empirical)

( )
( )

Max-Min Ant System (MMAS)
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Theoretical results: Overview

Convergence in probability of an ACO algorithm 
(Gutjahr 2000) 
(Theoretical bounds, but not very practical)
Run-time analysis
Understanding ACO: Search biases
Relations to other optimization algorithms



Search biases 

A desirable search bias towards good zones of 
the search space is given by the pheromones
Negative search bias caused by selection fix-
points
Negative search bias caused by an unfair 
competition
Note: For these theoretical considerations local 
heuristic information is ignored (e.g. by setting 
β=0), i.e. the question is: What can ACO do 
beyond local search?

M. Dorigo, C. Blum: Theoretical Computer Science 344 (2005) 243 – 278



Several ants building a common pheromone matrix may 
contribute “building blocks” to a solution that is likely to be 
follow by the ants of later generations. 
The competition between the ants is a driving force 
of ACO algorithms.
This is analogous to but not generally the same as in GA

Selection fix-points: Ant number
Why to use more than one ant per iteration? Wouldn’t 
the algorithm work with only one ant?

Peromones tend towards

Effect increases with problem size. (Merkle & Middendorf 2004)



Selection fix-points: Constraints

The adaptation of the pheromone matrix depends also 
on the number of ants having passed a solution 
component
In unconstrained problem all nodes of the underlying 
graph have the same degree 
In constrained problems the degree may differ such 
that poor regions with low degrees become more 
attractive than good regions with high degree (cf. 2. 
exercise of set 6) 
One can construct examples where the increased 
exploration of the bad regions lead to a fixed point of 
the algorithm or a local minimum of the search 
problem



Bias by an unfair competition
Unconstrained ACOs always improve the iteration quality 
(expected value of the ants’ performance) or are 
stationary
Constrained problem: minimal k-cardinality tree
For example the trivial case
Start solution with empty set
add one node
etc.
finally

obj. function
since 



Bias by an unfair competition
Quality decreases (!) when starting from a homogeneous
initial pheromone matrix
The branching paths get twice as much update although
they lead to a larger expected cost
The impact of the 
pheromone value 
update increases 
and the expected 
iteration quality 
decreases faster
Note: Quality relates 
to inverse costs



Hyper-cube framework (HC-ACO)

( )opt
ii sfk /+= τρτ

Pheromone update

Blum, Roli, Dorigo (2001) HC-ACO. 4th Metaheuristics International Conference, 399-403

oj is a component of solution i

Maximum if all ant follow forever the optimal 

solution:

τ=(τ1,…,τk) is a k-dimensional vector in [τmin, τmax ]k
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M: number of solution components (e.g. edges of a graph)

[Not an algorithm, but a framework which applies for several variants]

w.l.o.g.: ]1,0[∈jα



Search space: “Hyper-cube framework”
A binarised solution s=(s1,…,sM) is a subset of the edges 
E of a graph G=(N,E) indicated by si being 1 or 0.
Pheromone normalisation

Hyper-cube update rule (μ=1-ρ)

Pheromones are updated in the span of the solutions



Search space: “Hyper-cube framework”

The pheromone vector moves a bit towards the weighted
mean of the solutions produced by the current iteration.



Benefits of the Hyper-cube framework
A diversification scheme

global desirability:

global frequency:

all solutions generated since the start

At stagnation the algorithm may be restarted with a 
pheromone (nxn) matrix (or vector in n(n-1)/2 dimensions)
constructed from vdes or the inverse of vfr

in order to keep good solutions, but also to favour regions 
where few ants have been before.

(More generally, the benefit is theoretical convenience!)



Relation to other algorithms: 
Model-Based Search

E.g. in ACO:

Model: 
pheromone matrix
Sample: 
ants following 
pheromone traces
Learning:
pheromone update

Auxilary memory:
best-so-far solution

Scheme of the MBS approach

MBS approach with memory

Zlochrin, Birattari, Meuleau, Dorigo: Model-based Search for Combinatorial Optimization: 
A Critical Survey. Annals of Operations Research 2004.



Model Based Search

Candidate solutions are constructed using some 
parameterized probabilistic model, that is, a 
parameterized probability distribution over the solution 
space.
The candidate solutions are used to modify the model in 
a way that is deemed to bias future sampling toward low 
cost solutions.



ACO as MBO
A finite set C = {c1, c2, … cNC

} of components, where NC
is the number of components
A finite set X of states of the problem, where a state is a 
sequence x = {ci,cj,… ck,…} over the elements of C. The 
length of a sequence x, that is, the number of compo-
nents in the sequence, is expressed by |x|. The set of 
(candidate) solutions S is a subset of X (i.e. S ⊆ X).
A set of feasible states Xf, with Xf ⊆ X, defined via a set 
of constraints Ω
A non-empty set S* of optimal solutions, with S* ⊆ Xf and 
S* ⊆ S
Formulation of the update in the hyper-cube framework
Result is a fully-connected weighted graph



GA as MBS
Generate new solutions using the current probabilistic 
model
Replace (some of) the old solutions by the new ones.
Modify the model using the new population.



GA as MBS
Probabilistic simulation of a genetic algorithm with 
tournament selection
Probabilistic model of the population: individual are 
generated by biased draws based on a probability 
vector. E.g. if the vector entry pi is 0.9 it is likely to 
have a 1 at position i in this individual’s string.
Tournament selection: Choose two individuals a and b

The model is updated by

compact Genetic Algorithm 
(cGA) (Harik et al., 1999)



GA as MBS
Bits in the genome were chosen independently. What 
about schemata? 
Modeling dependencies between string positions e.g.

learning a chain distribution as in ACO starting at 
the first character of the string and setting the next 
one by a conditional probability
by a matrix of pair-wise joint frequencies
by a forest of mutually independent dependency 
trees

In order to capture the essential idea of GA (building 
blocks the probabilistic model must be different from 
the ACO model (i.e. the pheromone matrix + update)



ACO Reading suggestions
General:

M. Dorigo & K. Socha, An Introduction to Ant Colony 
Optimization: In T. F. Gonzalez, Approximation Algorithms and 
Metaheuristics, CRC Press, 2007. IridiaTr2006-010r003.pdf
M. Dorigo, T. Stützle (2004) Ant Colony Optimization, MIT Press.

Theory:
M. Dorigo, V. Maniezzo, A. Colorni (1996) Ant System: 
Optimization by a Colony of Cooperating Agents. IEEE 
Transactions on Systems, Man, and Cybernetics B 26:1, 1-13.
M. Dorigo and C. Blum. Ant colony optimization theory: A survey.
Theoretical Computer Science, 344(2–3):243–278, 2005. 

Applications
see proceedings of the ANTS conferences or the journal Swarm 
Intelligence
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