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Overview: Remainder of the course

. GA (1-7)
Il. GP (8-10)

Il ACO (11-13): Ant colony optimization <R

V. PSO (14-15): Particle swarm optimization
and differential evolution

V. NC (1 6) Overview on DNA computing, Membrane computing,
Molecular computing, Amorphous computing, Organic computing, ....

VI. Wrapping up: Metaheuristic search (17)

Not included:
artificial neural networks, quantum computing, cellular automata,

artificial immune systems



Definition of a Combinatorial
Optimization Problem (COP)

(S.€2.f)

 SiIs a search space defined over a finite set of discrete
decision variables

« () Is a set of constraints among the variables
e f IS an objective function to be minimized

e § is contained in D={11,... v}

* Sq: set of solutions that satisfy all constraints
e Optimum (maximum) s eS,: f(s*)z f(s) forall s e S,,
« Task: Find at least one optimum



GA/GP and ACO as COPs

GA/GP

bit strings/trees
correctness (GP)
fitness

correct programs

fittest individual/
best program on
fitness cases

ACO

e paths in a graph

e e.g. non-intersecting
* total path length

e e.g. hon-intersecting
naths

e path of minimal
ength




Applying Ant Methods to Optimisation

What we need to set up an ACO

e Problem representation that allows the solution to be built up incrementally
e Desirability heuristic 1) to help in building up the solution

e Constraints that permit only feasible/valid solutions to be constructed

e Pheromone update rule incorporating quality of the solution

e Probability rule that is a function of desirability and pheromone strength



ACO algorithm (in brief)

« Set parameters, initialize pheromone trails
« SCHEDULE_ACTIVITIES

- ConstructAntSolutions
- DaemonActions {optional}
- UpdatePheromones
« END_SCHEDULE_ACTIVITIES




ACO algorithm

Algorithm 1 The framework of a basic ACO algorithm

input: An instance P of a CO problem model P = (S, f, Q).

InitializePheromoneValues(7)
Shs <— NULL
while termination conditions not met do
Siter < ¥
for j =1,...,n,do
5 < ConstructSolution(7)
if s 1s a valid solution then
s < LocalSearch(s) {optional}
if (f(s) < f(sps)) or (Sps = NULL) then spg <
Siter < Siter U {5}
end if
end for
ApplyPheromoneUpdate(T, Siter.Sbs)
end while
output: The best-so-far solution spg

init best-so-far solution

loop over ants

set of valid solutions

update best-so-far
store valid solutions




ACO Algorithms: Ant system (AS)
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http://www.scholarpedia.org/article/Ant_colony_optimization



Ant colony system (ACS)

G il
Pseudorandom — if je N(Sk )
proportional rule: p(cl-,- |Sf)=< Z%fim”im
(use probability rule Cim N Sk _
with probability 1-q,, | 0 otherwise
use maximum with
probability gy) ¢,: graph edge, s2: partial solution of ant £,

possible continuation of 5,2, Transition i—;

Local pheromone

update (after each r, < (1—p)r, + pAr,
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best
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(Dorigo & Gambardella 1997)



Max-Min Ant System (MMAS)

(1) Only the best ant adds pheromone trails (iteration best

or best so far _ best
) r, < (l-p)r, + pAz;
( 1 1 - -
Atk =] L_k If ant k£ used edge (7,j) In its tour
|0 otherwise

(i) Minimum and maximum values of the pheromone are

Stutzle and Hoos (2000)

explicitly limited (by truncation): 7 .., 7
ap
7; 1y . )
Pseudorandom )\ g T e N(s7)
. P Ci' |Sk = 3 zm771m
proportional rule: / ¢, eNls?
0 otherwise

1 . . :
Initialize by maximum  Zme = - L best so far or optimum (if known)
o)

(minimum empirical)



ACO variants

ACO variant Authors Year
Elitist AS (EAS) Dorigo 1992
Continuous ACO (CACO) Bilchev and I.C. Parmee 1995
Dorigo, Maniezzo, and Colorni 1996
Ant Colony System (ACS) Dorigo and Gambardella 1997
Bullnheimer, Hartl, and
Rank-based AS (RAS) Strauss 1999
Max-Min Ant System (MMAS) Stutzle and Hoos 2000
Hyper-Cube Framework (HCF) Blum and Dorigo 2004

C. Blum (2005) Ant colony optimization: Introduction and recent trends. Physics of Life Reviews 2:4, 353-373.



Negative pheromones in real ants

Robinson EJ, Jackson DE, Holcombe M, Ratnieks FL
(2005) Insect communication: 'no entry' signal in ant
foraging. Nature. 438:7067, 442.

Abstract: Forager ants lay attractive trail pheromones to guide
nestmates to food, but the effectiveness of foraging networks might
be improved if pheromones could also be used to repel foragers from
unrewarding routes. Here we present empirical evidence for such a
negative trail pheromone, deployed by Pharaoh's ants (Monomorium
pharaonis) as a 'no entry' signal to mark an unrewarding foraging
path. This finding constitutes another example of the sophisticated
control mechanisms used in self-organized ant colonies.



Properties of ACO in a numerical experiment

Best tour length
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Fig. 4. Evolution of the standard deviation of the population’s tour lengths (Oliver30). Typical run.

Dorigo et al.: Ant System: Optimization by a Colony of Cooperating Agents



Properties of ACO in a numerical experiment

Average node branching
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Fig. 5. Evolution of the average node branching of the problem’s graph (Oliver30). Typical run.
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Fig. 7. Average node branching of a run going to stagnation behavior (Oliver30). Typical run obtained setting

o=5 and 3=2.

Dorigo et al.: Ant System: Optimization by a Colony of Cooperating Agents
IEEE Transactions on Systems, Man, and Cybernetics—Part B, Vol.26, No.1, 1996, pp.1-13



Numerical experiment
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Fig. 8. Ant-cycle behavior for different combinations of o3 parameters.

@ - The algorithm finds the best known solution without entering the stagnation behavior.

oo - The algorithm doesn't find good solutions without entering the stagnation behavior.
& - The algorithm doesn't find good solutions and enters the stagnation behavior.

Dorigo et al.: Ant System: Optimization by a Colony of Cooperating Agents
IEEE Transactions on Systems, Man, and Cybernetics—Part B, Vol.26, No.1, 1996, pp.1-13



Theoretical results: Overview

« Convergence in probability of an ACO algorithm
(Gutjahr 2000)
(Theoretical bounds, but not very practical)

« Run-time analysis (short)
. Understanding ACQO: Search biases (later)
. Relations to other optimization algorithms (later)



Convergence

For simplified algorithms; bounds not very tight

Given a lower bound for the pheromones the algorithm explores
everywhere and must therefore find an optimal solution given
sufficiently long time, i.e.

Theorem (Dorigo & Stuetzle): Let p/(§) be the probability that
ACOQO (best-so-far update and lower bound for pheromones)
finds an optimal solution at least once within the first fiterations.
Then, for an arbitrarily small eps > 0 and for a sufficiently large
tit holds that:

p+(t)=1 —eps and asymptotically lim,, o (f) = 1.

Logarithmically decreasing 7. is also OK

n

save convergence times can be very large!



Run-time analysis

« For large evaporation rate (unrealistic!):
identical to (1+1)-ES (i.e. weakly exponential)

» For small evaporation rates polynomial
complexity can be achieved (for ONE-MAX)

Neumann & Witt (2007)



Search space: "Hyper-cube framework”

« Given a solution (path) s=(s,,...,S,,)

« the solution is a subsets of the edges E of a graph
G=(N,E)

o Partitionin? of E: |
if a link belongs to s: 1 another solution
otherwise 0 Sol of a2 o

« S can be represented by a
binary vector with dimension
n(n-1 /2 (') 0.0.1) (1,0, 1)

« Pheromones are updated
In the span of the solutions

« Not an algorithms, but a currently
framework which applies s ot 1 ., notrealized
for several variants - -

ll

-
mil_ . -

(1,1,0)

best solution



Relation to other algorithms

o Next time.



Vehicle routing problems

Sales Dept

CUBOMMEDE: B s i N s sl i o i . o New orders
Orders DB

FORECAST

SIMULATE/
MONITOR/
RE-PLAN

OPTIMIZE

Planning Dept

\

Delivered
orders

Vehicles'
Tours

Fleet operational
control station

A.E. Rizzoli, - R. Montemanni - E. Lucibello - L.M. Gambardella (2007) Ant colony
optimization for real-world vehicle routing problems Swarm Intelligence 1: 135-151



Vehicle routing problems

E.g. distribute 52000 palletsto =
6800 customers over a period
of 20 days

« Dynamic problem:
continuously incoming orders
e Strategic planning: Finding
feasible tours is hard
10 30 60 80 120 180 240 infinite

e Computing time: 5 min Time windows width (min)
(3h for human operators)

* More tours required for Hl
narrower arrival time window PE

[+
n

=1] = = oo
5, Q [£] o

Total number of tours
()]
(=]

o
(4]

(9]
[}

AR-RegTW AR-Free

HP, : Total number of tours 2056 1807 1614
* ImpIICIt knOWIedge on trafflc Total km 147271 143983 126258
|earned from human Operators Average truck loading 76.91% 87.35% 97.81%

A.E. Rizzoli, - R. Montemanni - E. Lucibello - L.M. Gambardella (2007) Ant colony
optimization for real-world vehicle routing problems Swarm Intelligence 1: 135-151



ACO Reading suggestions

General:

» M. Dorigo & K. Socha, An Introduction to Ant Colony
Optimization: In T. F. Gonzalez, Approximation Algorithms and
Metaheuristics, CRC Press, 2007. IridiaTr2006-010r003.pdf

« M. Dorigo, T. Stutzle (2004) Ant Colony Optimization, MIT Press.
Theory:

« M. Dorigo, V. Maniezzo, A. Colorni (1996) Ant System:
Optimization by a Colony of Cooperating Agents. /EEE
Transactions on Systems, Man, and Cybernetics B 26:1, 1-13.

« M. Dorigo and C. Blum. Ant colony optimization theory: A survey.
Theoretical Computer Science, 344(2-3):243-278, 2005.

Applications

« see proceedings of the ANTS conferences or the journal Swarm
Intelligence



Ant-Robotics

Krieger MJ, Billeter JB, Keller L. (2000) Ant-like task allocation
and recruitment in cooperative robots. Nafure 406:6799, 992-995.
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