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Overview

Multiobjective Optimization
Fitness-distance correlations
No-free-lunch theorem for GA
Practical issues



GA for Multiobjective Optimization:
Combination of fithess functions

C. M. Fonseca &P. J. Fleming (1995) An Overview of Evolutionary Algorithms in Multiobjective Optimization
Evolutionary Computation 3(1): 1-16



Multiobjective optimization

1 x*1s Pareto optimal for a class of
fitness functions f; if there exists no x with

fl(x) > fi(X*) for all i

or, equivalently, x* is not dominated by
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GA for Multiobjective optimization

Benefits

« Collective search required for sampling the Pareto set
« Non-connected Pareto sets are OK

« Incorporation of constraints in fitness function

Problems:

« Selection of fit individuals?
o Elitism?

« Pareto-optimal diversity?
o Speed?
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NSGA-II conventional algorithm
(also GA-style)

Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal and T. Meyarivan (2000) A Fast Elitist Multi-
Objective Genetic Algorithm: NSGA-IIl, IEEE Transact. Evolutionary Computation 6,182-197.



How does it work?

« Non-dominated sorting genetic algorithm (NSGA)
« Selection by non-dominated sorting

« Preserving diversity along the non-dominated front
« Use two populations Pand P’

« — "being dominated by”, denotes a partial order induced
by a set of fithess functions

P' = find-nondominated-front (P)

P' ={1} include first member in P’
foreachpe PAp ¢ P’ take one solution at a time
P'=P' U {p} include p in P’ temporarily
foreachq€e PPANq#p compare p with other members of P’
if p < q, then P' = P'\{q} if p dominates a member of P’ delete it
else if ¢ < p, then P' = P'\{p} if p is dominated by other members of P,

do not include p in P’

Complexity per step: O(MN?)




"Ranking”

1. front
2. front

JF = fast-non-dominated-sort (P) F is a set of non-dominated fronts
1 =1 ¢ is the front counter and is initialized to one
until P #£ ()

JF; = find-nondominated-front (P) find the non-dominated front

P = P\F; remove non-dominated solutions from P

1 =14+1 increment the front counter




Preserving
diversity

crowding-distance-assignment (Z)
I =|Z|
for each i, set Z[i]gistance = 0
for each objective m
7T = sort(Z, m)
I[l}dista,nce — I[l]dismnce =0
fori =2to (I —1)

number of solutions in 7
initialize distance

sort using each objective value
so that boundary points are always selected
for all other points

T[i)aistance = L[i]gistance + (Z[i +1].m — Z[i —1].m) values of m-th fitness function

New distance measure: first rank, then lowest density:

( {nj if (irank < jraﬂk) or ((?:?‘Elﬂk — jrank) and (idistmnce > jdistance) )




Non—dominated Crowding P

t+1

NSGA-II

main T
loop h

sorting distance

F_] sorting
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.::' = Rejected
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R; = PLUQ;

F = fast-nondominated-sort (R;)

Pt—l—l :mﬂ.ﬂdizl

until ‘Pt_|_1| + |}_¢| <N
crowding-distance-assignment (F;)
Piyy =Py UF;
1=1+1

Sort(Fi, <n)

Pry1 = Piyg UF[1: (N — [P ])]

(Q¢++1 = make-new-pop (Psi1)

t=t+1

combine parent and children population
F = (F1,Fs,...), all non-dominated fronts of R;

till the parent population is filled

calculate crowding distance in F;

include i-th non-dominated front in the parent pop
check the next front for inclusion

sort in descending order using <,

choose the first (N — |P.y1|) elements of cal F';

use selection, crossover and mutation to create

a new population Q¢4
increment the generation counter
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Fithness Distance Correlation

Assume you have a set of fitnesses ' = (f},...,f,) and a set of known distances
to the global optimum D = (d,,...,d,)

'
SEF x SD
SF and SD are the standard deviation of F' and D respectively and

FDC =

1 n - B
(_.-T — — ; — f [, - [
2= Pl
where f and d are the means of F and D. C is the covariance of F and D.
ldeally, FDC = -1, i.e. the smaller the distance the higher the fitness

Maximally deceptive fitness functions: FDC = 1.



FDC Examples

Max-Ones: fitness is the number of ones in the chromosome. FDC = -1
Royal Road R1: 64-bit, reward groups of 8 contiguous ones. FDC ~ -0.18

Royal Road R2: 64-bit, reward groups of 8, 16 and 32 contiguous ones. FDC ~
-0.13

Gray codes vs. binary codes: for large numbers of bits, Gray coding usually has a
better FDC

Distance to solution

10

111...11



deceplive
max

Deceptive Fitness Functions
Trap function FDC = -0.87

Fitness

= 1.0

signal
. deceptive basin

ksize

global
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global
max
deceplive

max

no. ones

Fitness

T 69

global
max

0 910 no. ones

Highly deceptive trap function FDC = 0.73

Deceptive fitness functions increase the further we get from the global optimum

It's the GA designer’s job to design a fitness function that leads towards the global
optimum — as best they can (we don't usually know where the global optimum is)



Deceptive fithess functions

A sub-schema is more specific then a schema
(i.e. as a subset it is smaller then the superset)

A schema is deceptive if the sub-schema that contains
the deceptive attractor is no worse than all other sub-
schemata in the schema

A fitness function is fully deceptive if all schemas are
deceptive (e.g. f[x)=(#1’s) if x*¥0 and f{0)=n+1)
FDC may not be a good indicator of deceptiveness for

the following functions:
Ax)=max{(#1’s), (#0’s) }+el(x=0) f

>

n/2 +¢
n/2 .

(#1's)
g
n/2
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Figure 2: A sample of fitness distance scatter plots. Function sources are given in Table 1. FDC values for
functions on more than 12 bits are computed from a random sample of 4000 points. The functions are as follows:
{a-c) one, two and three copies of Deb & Goldberg’s fully deceptive 6-bit problem (r = 0.30). Notice the additive
effect. (d) Holland’s royal road on 128 bits (b = 8, k = 4 and g = 0), (r = 0.27). (e-g) one, two and three copies
of Whitley’s F'2, a fully deceptive 4-bit problem (r = 0.51}. (h) Horn, Goldberg & Deb’s long path problem with
L1 bits (r = —0.12). Notice the path. (i.j) De Jong’s F3 binary and Gray coded with 15 bits as a maximization
problem (v = —0.86 and —0.57). (k) Liepins and Vose’s fully deceptive problem on 10 bits (r = 0.98) and (1)
their transformed problem (r = —0.02). Correlation cannot detect the X.



Fithess-Distance Correlation

Obijectives:

 Visualization and prediction of difficulty of a problem
based on the prediction of GA behaviour on a number
of reasonably well-studied problems

« Are the predicted results reproducible?

« "Surprises” when using royal road fitness functions
» Effect of differences in coding and representation

« Connection between GAs and heuristic search

Previous slide: T Jones, S Forrest (1995) Fitness distance correlation as a measure of problem
difficulty for genetic algorithms. Neural Information Processing Systems.



GA and GP

Genetic Algorithms and Genetic Programming are related fields

GAs use a fixed length linear representation
GP uses a variable size tree representation
(variable length means variable length up to some 7ixed limit)

Representations and genetic operators of GA and GP appear
different, (ultimately they are populations of bit strings in the
computer’'s memory)

The important difference lies in the interpretation of the
representation: 1-to-1 mapping between the description of an
object and the object itself (GA) or a many-to-1 mapping (GP)

No Free Lunch theorem is valid for 1-to-1 mappings but not for
many-to-1 mappings

Many of the empirical results discovered in one field apply to
the other field e.g. maintaining high diversity in a population
iImproves performance

Woodward (2003)



No-Free-Lunch Theorems

o Statement:
- Averaged over all problems

- For any performance metric related to number of
distinct data points

- All non-revisiting black-box algorithms will display
the same performance

 Implications

- If a new black box algorithm is good for one
problem - it Is probably poor for another one

- There are as many deceptive as easy fitness
functions

- Makes sense not to use “black-box algorithms”

« Ongoing work showing counterexamples given
specific constraints

Wolpert & Macready (1997) No Free Lunch Theorems for Optimization IEEE Transact Evolutionary Computation 1, 67



Pragmatics of GA Design

e Selection methods

e Crossover

e Mutation

e Population model and elitism
e Spatial separation

e Maintaining diversity

e Parameter setting

e Evaluating the system — experimental methodology

Next (fifth) tutorials: Pragmatics of GA design
Work yourself through slides 21-44. At the tutorials some exam-
style questions will be available for you to be answered in class.



Selection Method Considerations

What do we want selection to do?

e Provide selection pressure — AND avoid premature convergence, maintain
diversity, exploration vs. exploitation
How would we detect premature convergence?

A measure:

e Takeover time — till best individual replaces all others
Is the best individual good enough? (If yes, convergence wasn't premature!)

Do we want the optimal solution, a good solution, any solution, a solution within
some specific time, a good (on average) set of solutions?



Selection Methods

Aim: choose parents. Emphasise fitter ones. Balance exploitation and exploration.

e Fitness-proportionate selection (FPS)
Often leads to premature convergence; has high selection pressure

e Rank-based selection
Fitness(i) = Min + (Max - Min)(Rank(i) - 1)/(N-1) then do FPS
Max and Min are chosen by you.
This is linear scaling, but can do exponential scaling or any other scaling
that...
...Preserves diversity, slows selection pressure

e Tournament selection
Select k individuals. (Copies of ) Fittest m go into intermediate population
(perhaps with some probability)
Less computationally expensive (don’t evaluate all chroms.)



Uniform selection (FUSS — Fitness Uniform Selection Scheme)

Lowest /highest fitness in current generation is Min, Max. Select a fitness
f uniformly in [Min, Max]. Individual with fitness closest to f is chosen.
Maintains genetic diversity — we only want one solution of maximal fitness.
Favours those solutions that are different from all others and encourages search

Elitism

Copy some number of fittest individuals into intermediate or next-
generation population

Don't lose good solutions when we've found them until we find better
solutions

and others, e.g. combinations of the above. See Mitchell Sect. 5.4.

Fitness sharing
Fitness + raw fitness / some measure of how many others are similar

Reward difference. Get speciation, can explore several local maxima, avoid
premature convergence

May wish to change the selection method or rate parameters as a function of
generation or diversity or fitness: balancing exploration at start of process with
exploitation later on, or to avoid premature convergence, or to provide killer
Instinct



Crossover

e Single-point, Two-point (as seen previously)
e Try to preserve building blocks (but avoid hitch-hiking): cf. Montana-Davis

e Uniform: choose each child gene with probability p from parent 1, else 2 — so
no linkage between genes. Often p = 0.5 or a bit higher.

Attempts to make crossover less disruptive (or at least mitigate disruptive effects):

— Brood crossover: 2 parents produce several offspring, fittest 2 chosen
— Elite crossover: put offspring into pool with parents, select fittest 2

— Intelligent crossover: crossover hotspots — a template for crossover points that
is also evolved



Mutation

Original aim: to preserve diversity
Can end up solving the problem

Allele (point) mutation probability of mutation p,, ~ 1/l where [ is the
chromosome length (ca. 1 mutation per chromosome)

Reordering mutations — inversion or cycling — like natural evolution
Swap mutations — swap 2 random positions

Intelligent mutations

— encode p,,, onto chromosome and allow GA to evolve it
— use a schedule to change p,, as a function of time

— or as a function of fitness

Choose to suit the problem — chromosome length, population size



Population Model and Elitism

e What do we do with the new candidates?

e Generational model: place children from generation n into generation n + 1,
continue until generation n + 1 is full

e Generational model with elitism: keep some proportion of the best candidates
from generation n and give them a free ride into generation n + 1

e Steady state model: newly created children are inserted into the current
generation and replace the worst candidates

Elitism and steady state can lead to very high selection pressure (why?)



Spatial Separation

Island model: evolve independent populations, sometimes allowing a good
candidate to migrate across islands

Simple island model:

— P independent populations

— every M generations select one (or best) candidate from one population
— insert it into all other populations (replace the worst)

Advantages: encourages diversity, can run in parallel, find alternative solutions
Can use different fitness functions on the islands — multicriterion optimisation

Cellular model: candidates are arranged on a Grid and can only mate with
nearby candidates; tune selection pressure via grid shape (square grid, short
takeover time, high selection pressure; narrow grid, long takeover time, low
selection pressure)



Maintaining Diversity

Restrict which individuals can mate with each other, e.g. must be sufficiently
different.

New offspring replace those most similar to themselves
Fitness sharing (see earlier slide)

Mate selection — keep a label on each chromosome. It can only mate with
chromosomes with same label. Evolve labels

Island and cellular models

High p,,



Setting Parameters

Usual approach:

— Try a wide range of parameters (logarithmic? linear search?)
— Using the best, alter one at a time

— Continue until no improvement possible

but the parameters interact non-linearly
Systematic approach: use a lot of CPU time

Self-adaptation? Fitness of parameters based on how many highly fit individuals

they contribute to producing (so we need to run a GA to get the fitness of a
GA)

Starting point: Small population 20-50, crossover rate 0.75-0.95, mutation
rate 0.005-0.01 per bit (0.01 x 50 ~ half a mutation per generation)



®

®

®

Evaluating the System

No. generations vs. no. evaluations

Cpu time vs. real time (fitness function takes most time)
Benchmarks: a range of real problems

Compare with alternative algorithms

Time to reach solution

Quality of solution



e Real fitness of solution (to your actual purpose) — did the GA exploit the
fitness function or did it do what you wanted it to do? E.g. spotting tanks
(all the pictures of the tanks were taken in bright sunlight — detecting overall
intensity level was sufficient — the GA did not recognise the tank, only the
sunshine)

e Acceptability to users

e When is one parameter set better than another? Statistics, many experiments
with each parameter set (see Lecture notes from previous years Appendix A
for notes on statistics and data analysis)



What do Genetic Algorithms Offer?

Robust problem-solving ability
Search, optimisation, machine learning

Good performance on dynamic as well as static problems (e.g. job-shop
scheduling)

Ease of implementation

Hybridisation with other methods (e.g. genetic planning, as optimiser for initial
hill-climbing solutions)

Anytime problem solving behaviour

Easy to run on parallel machines

A competitive solution for many hard problems

Reading: Mitchell Chapter 5 — all of it
Section 10 of Whitley tutorial (notes Chapter 2)



Representation: Encoding the candidates

How shall we represent it?

e Fixed-length linear binary encodings
Unnatural. Unnatural orderings. Hamming cliff. Gray codes?

Theory exists

e Fixed-length linear non-binary encodings
Real values or characters. NN weights or exam timetables

e Variable length linear non-binary encodings
Plans, Prisoner’'s Dilemma

e [ree-based chromosomes
GP. Open-ended search space. But unwieldy trees, much junk

e Implicit, explicit
Chromosome of parameters vs. grammar

Intuition: encode solution in the most natural way possible, then create genetic
operators to make it work.



Operators for Non-binary Encodings: Crossover

We can use single- or multi-point crossover on all linear encodings.

If we use binary representation of non-binary numbers, need to decide whether
to do crossover at the points between the numbers or between any of the bits.
(The latter will not maintain “number-sized” building blocks.)

Montana-Davis crossover for neural nets — maintain semantics

“Semantics-based” crossover for plans — crossover inbetween plan actions (see
also evolving policies — subsequent lecture)

Subtree crossover for tree-based chromosomes

(also use) Averaging crossover for real-valued chromosomes: value of gene i

in child is (first-parent + « - second-parent) — will tend to interpolate fitness
between parents



Fitness

parent 1

]
child parent 2

Value of gene |

(What if fitness surface varies hugely between parentl and parent2?)

e Uniform crossover: choose each child gene with probability p from parentl,
(1 — p) from parent2

e Brood crossover, elite crossover: aim to mitigate disruptive effects of crossover

e Intelligent crossover: evolve crossover point(s) on chromosome



Operators for Non-binary Encodings: Mutation

Binary:point mutation (bit-flipping)

Non-binary, discrete: Replace allele with another randomly chosen from the
alphabet

Non-binary, real: Add small random number, keep value within some desired
range

Plans: add in a random action, mutate the parameter(s) to some action,
delete an action

Trees: add a random subtree, promote a subtree (hoist), remove/shrink a
subtree (replace by a terminal)

Reordering, swap mutation, encode mutation parameters onto chromosome



Evaluating the Candidates

o Need

— A set of configurations €' — the chromosomes

— A fitness function f: C — R

— An additional geometrical /topological/algebraic structure N on C that
allows us to define which chromosomes are neighbours — i.e. what says that
chromosome A should be arrayed next to chromosome B on our picture
of the fitness landscape? How similar are two chromosomes? (Stadler:
landscape theory)

e Single candidate fitness function, f(¢;)
— The more fine-grained, the better
— Should push towards better solutions

e Fitness function, neighbourhood structure, operators all interact



Searching the Space 1

Crossover and mutation cause the GA to search the fitness landscape.

Must maintain genetic diversity in order to escape from local optima

Fitness Uniform Selection Scheme — FUSS (M. Hutter)

Suppose the lowest and highest fitness values in the population are f,,;, and
finax- Select a fitness value f uniformly in [fin. frnaz|. The individual whose
fitness is closest to f is chosen for intermediate population (then crossover and
mutation).

Uses a distribution over fitness values rather than individual chromosomes

So if there's a high density of unfit individuals and a low density of fit individuals,
we'll favour the fitter ones. (We'll also favour low fitness individuals if there are
only a few of them = extra search)



Searching the Space 2
Fitness Uniform Deletion Scheme — FUDS (Hutter/Legg IDSIA)
Use with a steady-state GA

When we need to delete an individual, only delete one with a very common fitness
value (divide fitness range into bins; delete an individual from the bin with the
most individuals)

Does better than random deletion on some common and deceptive problems



Searching the Space 3
Scouting-Inspired Evolutionary Algorithm — SEA (Pfaffmann et al.)

Change the mutation amount according to how “surprising’ a chromosome's
fitness is (amount to be added to real-valued gene given by Gaussian distribution

with width o)
e Keep a database of chromosomes and their fitness values

e Estimate the fitness of a new chromosome from database values (e.g. use
nearest neighbours)

e Surprise = actual measured fitness - estimated fitness

e If surprise is large, make o small; we are in part of search space not seen
before, so explore some more

e If surprise is small, make o large; we are in part of search space that is
well-modelled, so try to jump elsewhere



Searching the Space 4

e We might use fitness sharing for multiple solutions — prevent premature
convergence

— Fitness = Raw fitness/(Some measure of how many others are similar)
— Reward difference. Speciation. Explore several local maxima

Searching in Phenotype Fitness Space

e Round Robin competitions for strategies

e Decode genotype into phenotype and evaluate its behaviour: controllers for
agents, neural networks



o

L

L J

When should a GA be used?

Large or very large search space
Noughts and crosses vs. protein folding

A sufficiently good solution is good enough
Exam timetabling

Fitness landscape is not smooth and unimodal
Optimal headphone loudness vs. setting value on a mixing desk

Fitness landscape is poorly understood
Find Flatiron building in Manhattan vs. Paris Left Bank bistro

Fitness function is noisy and/or complex
Sensory input or performance in noisy/unpredictable world



e No good algorithms exist to solve the problem
Timetabling?

e Good local search operators exist
Building a plan

e [he problem is weakly compositional
TSP vs. Lottery Extra

# Linux kernel tuning using a GA (Moilanen): chromosome is string of Linux
kernel internal settings, fitness function is performance under some workload
(benchmark workloads)

# TSP, knapsack, bin-packing, design of concert-hall acoustics, (simulated) F1
cars

Next (fifth) tutorials: Pragmatics of GA design
Work yourself through slides 21-44. At the tutorials some exam-
style questions will be available for you to be answered in class.



	Overview
	Overview
	GA for Multiobjective Optimization:�Combination of fitness functions
	Multiobjective optimization
	GA for Multiobjective optimization
	How does it work?
	Performance
	Deceptive fitness functions
	GA and GP
	No-Free-Lunch Theorems�

