Genetic Algorithms and Genetic Programming Lecture 6

Gillian Hayes

10th October 2006

Evolving Neural Networks

- Reminder of neural networks
- Evolving weights
- Evolving network topology
- Grammars, robotics
- Evolving intelligent behaviours
- Example: evolving communication

Neural Networks

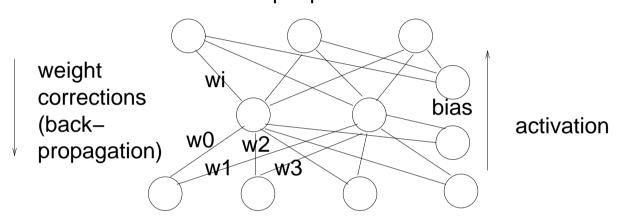
- Inspired by working of neurons in the brain
- Universal function approximators
- Used widely in machine learning
- Empirical predictive modelling
- Classification
- Robotic controllers

Reminder of Neural Networks

- Nodes and connections
- Weights attached to the connections
- Firing depends on inputs to the node
- Activation threshold function
- Input/hidden/output layers
- Feedforward networks
- Recurrent networks
- Training: back propagation

A Simple Feedforward Neural Network

output pattern



input pattern

Learning procedure: use a training set of <input, output> pairs. Present input, try to adjust weights to reduce the difference between the network's output and the desired output. (Rumelhart et al. 1986)

- supervised learning procedure

Evolving Weights 1

- in a fixed network
- as an alternative to back-propagation

Montana and Davis (IJCAI 1989) looked at:

- underwater sonic recordings (features, preprocessed)
- treated as a classification problem (whales, enemy subs)
- network topology

4 input units

7 units in hidden layer 1

10 units in hidden layer 2

1 output unit

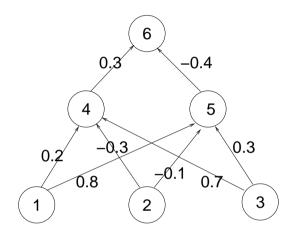
fully connected

18 extra thresholding connections (biases)

total weights 126

- GA chromosome: a list of 126 real-valued weights

Evolving Weights 2



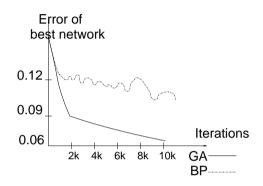
Chromosome: (0.3, -0.4, 0.2, -0.3, 0.7, 0.8, -0.1, -0.3)

Building blocks: all incoming weights to a given unit seems plausible.

Mutation: for **each** link coming in to the chosen unit, add a (different) random value between +1.0 and -1.0

Crossover: for each non-input unit, choose **all** the weights from Parent 1 or **all** the weights from Parent 2.

Evolving Weights 3: Results



Advantages of GA:

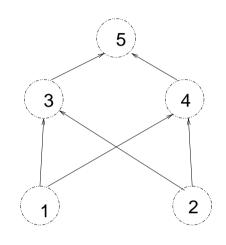
- better than BP for some tasks
- 'unsupervised' learning
- sparse reinforcement available, e.g. robots in unfamiliar environments
- may only need it to work in some parts of the input/output space, i.e. those experienced

Evolving Networks 1

- choosing a network topology is hard
- can it be done automatically?

Miller, Todd and Hegde (1989):

from unit:		1	2	3	4	5
to unit:	1	0	0	0	0	0
	2	0	0	0	0	0
	3	1	?	?		
	4	1	?			
	_	_	_			_



Chromosome: 00000 00000 ... (complete the rest...) Mutation: bit flipping

Crossover: exchange whole rows Limit to feedforward networks: any

links to input units or feedback connections are ignored.

Evolving Networks 2

Tasks tried by Miller et al.:

- (a) XOR (exclusive OR)
- (b) four quadrant:

$$< x, y > \rightarrow 0.0$$
 if $x, y \simeq 0.0$ or $x, y \simeq 1.0$
 $< x, y > \rightarrow 1.0$ otherwise

(c) pattern copying, with units in the hidden layer < number of input units Learning: back-propagation

Results: GA can easily find network topologies for these problems.

But are the problems too easy?

See Whitley and Schaffer (1992) for a more sophisticated approach

Grammars and Robotics

Grammatical encoding of the linkage matrix (here for XOR)

Generate linkage matrix from the grammar. If at the end of rewriting there are still non-terminal nodes, that node is "dead" – not connected.

- Develop chromosome (genotype) into network (phenotype) and train for fixed no. of training episodes.
- Fitness = error at end of training

Problems with direct encoding

Fixed connections: as size of matrix grows, chromosome size grows Can't encode repeated patterns, esp. with internal structure Takes a long time to generate high-performing networks

Advantages of grammatical encoding

Can represent large connectivity matrices in compact form Shorter encoding, faster search Variable topologies including recurrent connections

Better on encoder/decoder problem than direct encoding

Evolving Neural Network Behaviours

- Previous examples rely on training data
- What if we haven't got any?
- Example: a neural network which controls a mobile agent which is trying to achieve some goals in a dynamic environment.
- No good example of behaviour is available; or we wish to try a range of possible behaviours to see which is best.
- A fitness function is available based on goal achievement.

Evolving Neural Network Behaviours

General approach:

- Decide on how to represent inputs to and outputs from the neural network.
- Decide on a neural network architecture: might need to try a range of possibilities.
- Decide on a simulation which tests the NN's behaviour.
- Decide on a fitness function which tests how well the NN did in the simulation.
- All the usual GA stuff: chromosome representation, crossover, mutation, population size, etc.

Example: Evolving Communication

This is an example from Artificial Life: the study of computer generated "life" forms. (Matthew Quinn, University of Sussex)

- Khepera robots controlled by evolved neural networks
- Group task: robots move together as far as possible like dancing
- 8 sensor nodes, 4 motor nodes, hidden nodes
- Evolved thresholds, weights, decay parameters, size, connectivity of network
- ullet Co-evolution: select two robots from population, rate them for fitness $as\ a$ pair
- Initial result: leaders and followers emerge
- Only get a working pair 50% of the time

Example: Evolving Communication

- After a while a new single species emerges
- This behaviour uses communication based on simple movement:
 - both agents (A and B) rotate anti-clockwise
 - one agent (B) becomes aligned first and moves towards the other agent
 - agent B moves backward and forward while staying close to A
 - when A becomes aligned, it becomes the leader: it reverses its direction and is followed by B
- Very similar to movement communication used in social insects (e.g. dancing in honey bees)

Next: more theory, then another agent/robot example