
Genetic Algorithms and Genetic Programming

Lecture 7

Gillian Hayes

13th October 2006

Gillian Hayes GAGP Lecture 7 13th October 2006

1

Lecture 7: The Building Block Hypothesis

• The Building Block Hypothesis

• Experimental evidence for the BBH

• The Royal Road functions

• Disruption and Hitchhiking

• GAs versus Hill-climbing

• The “killer instinct”

• Local search

Gillian Hayes GAGP Lecture 7 13th October 2006

2

The Schema Theorem – Reminder

E(m(H, t + 1)) ≥ m(H, t)
û(H, t)

f̄(t)
(1 − pc

d(H)

l − 1
)[(1 − pm)o(H)]

Highest when

• û(H, t) is large – fit

• d(H) is small – short

• o(H) is small – small number of defined bits

Identifies building blocks of a good solution.

Gillian Hayes GAGP Lecture 7 13th October 2006

3

The Building Block Hypothesis 1

Schema Theorem: short, low-order, above average schemata receive
exponentially increasing trials in subsequent generations of a genetic algorithm.

During crossover, these “building blocks” become exchanged and combined.

So the Schema Theorem identifies the building blocks of a good solution although
it only addresses the disruptive effects of crossover (and the constructive effects
of crossover are supposed to be a large part of why GAs work). How do we
address these constructive effects?

Building Block Hypothesis: a genetic algorithm seeks optimal performance
through the juxtaposition of short, low-order, high-performance schemata, called
the building blocks.

Gillian Hayes GAGP Lecture 7 13th October 2006



4

The Building Block Hypothesis 2
best fitness

current
winner

small building larger building
blocks present blocks present

t

BBH: crossover combines short, low-order schemata into increasingly fit candidate
solutions. Requires:

• short, low-order, high-fitness schemata

• “stepping stone” solutions which combine Hi and Hj to create even higher
fitness schemata

Gillian Hayes GAGP Lecture 7 13th October 2006

The Building Block Hypothesis 5

The Building Block Hypothesis is a hypothesis – so we can do an experiment to
test it.

Experiment: use a problem which contains explicit building blocks and observe
the population. Do the building blocks combine to give good solutions in the way
the BBH predicts?

Mitchell, Forrest, Holland set up such a problem, using Royal Road functions.

Details: Mitchell, Chapter 4, pp127–133

Gillian Hayes GAGP Lecture 7 13th October 2006

6

The Royal Road Function(s) 1

Define fitness in terms of particular schemata: substrings that, if present in
population, ought to be combinable into the optimal solution. They should lay
out a “Royal Road” to the global optimum.

The first RR function R1 is defined using a list of schemata si. Each si has a
fitness coefficient ci. The fitness R1(x) of some bit string x is given by:

R1(x) =
∑

i

ciδi(x), δi(x) =

{

1 if x ∈ si

0 otherwise

Gillian Hayes GAGP Lecture 7 13th October 2006

The Royal Road Function(s) 1 7

Simple example using 16 bits:

s1 = 1 1 1 1 * * * * * * * * * * * *
s2 = * * * * 1 1 1 1 * * * * * * * *
s3 = * * * * * * * * 1 1 1 1 * * * *
s4 = * * * * * * * * * * * * 1 1 1 1

c1 = c2 = c3 = c4 = 4

sopt = 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

R1(opt) = 16

Take the string 1111 0100 1001 1111. It samples/matches s1 and s4.

So δ1(x) = δ4(x) = 1 and δ2(x) = δ3(x) = 0.

And R1(1111010010011111) = 8.

Gillian Hayes GAGP Lecture 7 13th October 2006



8

The Royal Road Function(s) 2

Several Royal Road functions defined in terms of different combinations of
schemata, with building blocks at different levels, e.g. 4 contiguous 1s, 8
contiguous 1s, 16 contiguous 1s, etc.

Try to evolve the string with all 1s and compare performance of GA against a
number of hill-climbing schemes:

• Steepest-ascent hill climbing (SAHC)

• Next-ascent hill climbing (NAHC)

• Random-mutation hill climbing (RMHC)

Will the GA do better?

Gillian Hayes GAGP Lecture 7 13th October 2006

9

Hill Climbing

Steepest-ascent hill climbing (SAHC)

1. Let current-best be a random string.

2. From left to right flip each bit in the string. Record fitness of each one-bit
mutant.

3. If any mutant is fitter than current-best, set current-best to fittest mutant and
goto 2.

4. If no fitness increase, save current-best and goto 1.

5. After N evaluations return fittest current-best.

Gillian Hayes GAGP Lecture 7 13th October 2006

Hill Climbing 10

Next-ascent hill climbing (NAHC)

1. Let current-best be a random string.

2. From left, flip each bit i in string. If no fitness increase, flip bit back. If fitness
increase, set current-best to new string and continue mutating new string from 1
bit after the bit at which fitness increase was found.

3. If no fitness increase, save current-best and goto 1.

4. After N evaluations return fittest current-best.

Gillian Hayes GAGP Lecture 7 13th October 2006

Hill Climbing 11

Random-mutation hill climbing (RMHC)

1. Let current-best be a random string.

2. Flip a random bit in current-best. If no fitness decrease, set current-best to
mutated string.

3. Repeat 2. until optimal string found or N evaluations completed.

4. Return fittest current-best.

See Mitchell p.129 for these algorithms.

Gillian Hayes GAGP Lecture 7 13th October 2006



12

Results
200 runs GA SAHC NAHC RMHC

Mean 61,334 > max > max 6,179 No. evaluations to
Median 54,208 > max > max 5,775 find optimal string

max = 256000

Why did the GA do worse than RMHC? When do GAs perform well?

• By Markov chain analysis, RMHC’s expected time is ∼6549 evaluations. OK.

• What’s going wrong in the GA? Larger combinations of si in the GA get broken
up by crossover and disrupted by mutation.

• And the GA suffers from hitch-hiking: once an instance of a high-fitness
schema is discovered, the “unfit” material, especially that just next to the fit
parts, spreads along with the fit material. Slows discovery of good schemata
in those positions.

Gillian Hayes GAGP Lecture 7 13th October 2006

13

Hitch-hiking

• Hitch-hikers prevent independent sampling particularly in those partitions falling
between two closely-spaced others, e.g. hitch-hikers with s2 and s4 (0s near
the ends of s2 and s4) drowned out instances of s3. So sampling in s3 region
not independent of sampling in s2 and s4 regions.

• Early convergence to wrong schemata in a number of partitions of the string
limits the effectiveness of crossover.

• Sampling of the different regions is not independent.

See Mitchell Fig. 4.2 p.133 for hitch-hiking effect.

Gillian Hayes GAGP Lecture 7 13th October 2006

14

Analysis

• Easy problem, no local maxima (so hill-climbing works, RMHC is systematic).

• GA will out-perform HC on parallel machines (why?)

• GA is not sampling evenly; schema theorem does not hold. If partitions are

sampled independently, schema theorem ought to hold.

Mitchell proposes an idealised GA (IGA):

– sample a new string si uniform-randomly

– if si contains a new desired schema, keep it and cross it over with previous
best string to incorporate new schema into the solution

• IGA aims to sample each partition independently and tend to keep best
schemata in each partition – static Building Block Hypothesis

Gillian Hayes GAGP Lecture 7 13th October 2006

15

• It works, and it’s N times faster than HC

• IGA unusable in practice (why?) but gives us a lower bound on time GA needs
to find optimal string

• In IGA each new string is an independent sample, whereas in RMHC each new
sample differs from the previous by only one bit – so RMHC takes longer to
construct building blocks

So we have some clues as to when GAs will do well...

Gillian Hayes GAGP Lecture 7 13th October 2006



16

When Do GAs Do Better Than Hill-climbing?
To act like an ideal GA and outperform hill-climbing (at least in this sort of
landscape) need

• Independent samples: big enough population, slow enough selection, high
enough mutation, so that no bit-positions are fixed at same value in every
chromosome

• Keeping desired schemata: strong enough selection to keep desired schemata
but slow enough selection to avoid hitch-hiking

• We want crossover to cross over good schemata quickly when they’re found to
make better chromosomes (but we don’t want crossover to disrupt solutions)

• Large N/long string so speedup over RMHC is worth it.

Not possible to satisfy all constraints at once – tailor to your problem

Gillian Hayes GAGP Lecture 7 13th October 2006

17

Where Now?

• Schema theorem starts to give us an idea of how GAs work but is flawed →

need better mathematical models of GA convergence . . .

• . . . but these better models don’t make our GA go faster

• Standard GA finds good areas, but lacks the killer instinct to find the globally
best solution

• Standard crossover often disrupts good solutions late in the run

• Binary representations of non-binary problems often slow the GA down rather
than allowing it to sample more freely. The “Hamming Cliff”.

Gillian Hayes GAGP Lecture 7 13th October 2006

18

The Killer Instinct
Want to get from good to best individuals.

[De Jong] Say range of payoff values is [1,100]. Quickly get population with
fitness say in [99,100]. Selective differential between best individuals and rest,
e.g. 99.988 and 100.000, is very small. Why should GA prefer one over another?

• Dynamically scale fitness function as a function of generations or fitness range

• Use rank-proportional selection to maintain a constant selection differential.
Slows down initial convergence but increases killer instinct in final stages.

• Elitism. Keep best individual found so far, or, selectively replace worst members
of population

Aim is to shift balance from exploration at start to exploitation at end.

Gillian Hayes GAGP Lecture 7 13th October 2006

19

The Killer Instinct and Memetic Algorithms

• Hill-climbing local neighbourhood search is a fast single solution method which
quickly gets stuck in local optima (cf. SAHC, NAHC)

• Genetic algorithms are a multi-solution technique which find good approximate
solutions which are non-local optima

• Hence: try applying local search to each member of a population after
crossover/mutation has been applied

• GA + LS = Memetic Algorithm

Gillian Hayes GAGP Lecture 7 13th October 2006



20

Making It Better

• Start the GA from good initial positions: seeding. If you know roughly where
a solution might lie, use this information.

• Use a representation close to the problem: does not have to be a fixed-length
linear binary string

• Use operators that suit the representation chosen, e.g. crossover only in
specific positions

• Run on parallel machines: island model GA (evolve isolated subpopulations,
allow to migrate at intervals)

Reading: Mitchell Chapter 4

Gillian Hayes GAGP Lecture 7 13th October 2006


