Evolving Neural Networks

Genetic Algorithms and Genetic Programming Lecture 6

Gillian Hayes

10th October 2006

10th October 2006

Reminder of neural networks

- Evolving weights
- Evolving network topology
- Grammars, robotics
- Evolving intelligent behaviours
- Example: evolving communication

Gillian Hayes

GAGP Lecture 6

10th October 2006

Gillian Hayes

GAGP Lecture 6

- informatics **Neural Networks**

- Inspired by working of neurons in the brain
- Universal function approximators
- Used widely in machine learning
- Empirical predictive modelling
- Classification
- Robotic controllers

3 Informatics
Reminder of Neural Networks
Nodes and connections
Weights attached to the connections
• Firing depends on inputs to the node
Activation threshold function

- Input/hidden/output layers
- Feedforward networks
- Recurrent networks

• Training: back propagation

informatics

Evolving Weights 1

- in a fixed network
- as an alternative to back-propagation
- Montana and Davis (IJCAI 1989) looked at:
- underwater sonic recordings (features, preprocessed)
- treated as a classification problem (whales, enemy subs)
- network topology

4 input units	
7 units in hidden layer 1	fully connected
10 units in hidden layer 2	18 extra thresholding connections (biases)
1 output unit	total weights 126

- GA chromosome: a list of 126 real-valued weights

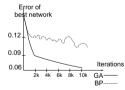
Gillian	Hayes

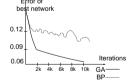
```
GAGP Lecture 6
```

10th October 2006

7 informatics

Evolving Weights 3: Results





Advantages of GA:

- better than BP for some tasks
- 'unsupervised' learning
- sparse reinforcement available, e.g. robots in unfamiliar environments
- may only need it to work in some parts of the input/output space, i.e. those experienced

Gillian Hayes GAGP Lecture 6 10th October 2006
6 informatics
Evolving Weights 2

$$\underbrace{\underbrace{\text{Gagp Lecture 6}}_{6} \underbrace{\text{Constrained of the states}}_{6}$$

Evolving Weights 2
 $\underbrace{\underbrace{\text{Constrained of the states}}_{0,2} \underbrace{\underbrace{\text{Constrained of the states}}_{0,2} \underbrace{\text{Constrained of the states}}_{0,2} \underbrace{\text{Const$

bias

activation

Mutation: for **each** link coming in to the chosen unit, add a (different) random value between +1.0 and -1.0

A Simple Feedforward Neural Network

output pattern

weight corrections

(back-

- supervised learning procedure

Gillian Hayes

propagation)

w0.

w1

Learning procedure: use a training set of <input, output> pairs.

output and the desired output. (Rumelhart et al. 1986)

 w^{2}

₩3

input pattern

Present input, try to adjust weights to reduce the difference between the network's

Crossover: for each non-input unit, choose all the weights from Parent 1 or all the weights from Parent 2.

Gillian Hayes

Evolving Networks 1

- choosing a ı	netw	ork	topo	ology	y is	hard	\sim
- can it be done automatically?					(5)		
Miller, Todd	and	He	egde	e (19	989)	:	(3) (4)
from unit:		1	2	3	4	5	
to unit:	1	0	0	0	0	0	
	2	0	0	0	0	0	(1) (2)
	3	1	?	?			\odot \bigcirc
	4	1	?				
	5	0	?			?	

Chromosome: 00000 00000 ... (complete the rest...) Mutation: bit flipping Crossover: exchange whole rows Limit to feedforward networks: any links to input units or feedback connections are ignored.

```
Gillian Hayes
```

GAGP Lecture 6

10th October 2006

Evolving Networks 2

Tasks tried by Miller et al.:

(a) XOR (exclusive - OR)

(b) four quadrant:

```
\langle x, y \rangle \rightarrow 0.0 if x, y \simeq 0.0 or x, y \simeq 1.0
```

 $\langle x, y \rangle \rightarrow 1.0$ otherwise

(c) pattern copying, with units in the hidden layer < number of input units Learning: back-propagation

Results: GA can easily find network topologies for these problems.

But are the problems too easy?

See Whitley and Schaffer (1992) for a more sophisticated approach

Gillian Hayes

GAGP Lecture 6

10th October 2006

10 informatics

Grammars and Robotics

• Grammatical encoding of the linkage matrix (here for XOR)

0
0
1
1
0
0
0
1

(S A B C D | A c p a c | B a a a e ...)

Generate linkage matrix from the grammar. If at the end of rewriting there are still non-terminal nodes, that node is "dead" - not connected.

Grammars and Robotics

• Develop chromosome (genotype) into network (phenotype) and train for fixed no. of training episodes.

 \bullet Fitness = error at end of training

Problems with direct encoding

Fixed connections: as size of matrix grows, chromosome size grows Can't encode repeated patterns, esp. with internal structure Takes a long time to generate high-performing networks

Advantages of grammatical encoding

Can represent large connectivity matrices in compact form

Shorter encoding, faster search

Variable topologies including recurrent connections

Better on encoder/decoder problem than direct encoding

Evolving Neural Network Behaviours

- Previous examples rely on *training data*
- What if we haven't got any?
- Example: a neural network which controls a mobile agent which is trying to achieve some goals in a dynamic environment.
- No good example of behaviour is available; or we wish to try a range of possible behaviours to see which is best.
- A fitness function is available based on goal achievement.

Gillian Hayes	
---------------	--

```
GAGP Lecture 6
```

13 informatics

Evolving Neural Network Behaviours

General approach:

- Decide on how to represent inputs to and outputs from the neural network.
- Decide on a neural network architecture: might need to try a range of possibilities.
- Decide on a simulation which tests the NN's behaviour.
- Decide on a fitness function which tests how well the NN did in the simulation.
- All the usual GA stuff: chromosome representation, crossover, mutation, population size, etc.

```
Gillian Hayes
```

GAGP Lecture 6

```
10th October 2006
```

14 informatics

10th October 2006

Example: Evolving Communication

This is an example from Artificial Life: the study of computer generated "life" forms. (Matthew Quinn, University of Sussex)

- Khepera robots controlled by evolved neural networks
- Group task: robots move together as far as possible like dancing
- 8 sensor nodes, 4 motor nodes, hidden nodes
- Evolved thresholds, weights, decay parameters, size, connectivity of network
- **Co-evolution**: select two robots from population, rate them for fitness *as a pair*
- Initial result: leaders and followers emerge
- Only get a working pair 50% of the time

Gillian Hayes

10th October 2006

15 informatics

Example: Evolving Communication

- After a while a new single species emerges
- This behaviour uses communication based on simple movement:
 - both agents (A and B) rotate anti-clockwise
 - one agent (B) becomes aligned first and moves towards the other agent
 - agent B moves backward and forward while staying close to A
 - when A becomes aligned, it becomes the leader: it reverses its direction and is followed by B
- Very similar to movement communication used in social insects (e.g. dancing in honey bees)

Next: more theory, then another agent/robot example