The Schema Theorem

How Do GAs Work?

- Selection of fit solutions
- Selection of fit substrings schemata
- Disruptive effects
- The Schema Theorem

$$E(m(H,t+1)) \ge \frac{\hat{u}(H,t)}{\bar{f}(t)} m(H,t) (1 - p_c \frac{d(H)}{L-1}) [(1 - p_m)^{o(H)}]$$

Gillian Hayes

```
GAGP Lecture 5
```

6th October 2006

a informatics

Gillian Hayes GAGP Lecture 5 6th October 2006

Genetic Algorithms and Genetic Programming Lecture 5

Gillian Hayes

6th October 2006

formatics

2 informatics

Selection of Fit Solutions

How do fit solutions come to be selected when we're doing fitness-proportionate selection?

Consider a large population P of solutions at time t.

Consider solution s_i :

 $f(s_i, t)$ is the fitness at t $m(s_i, t)$ is the number of copies of s_i in P at t $\overline{f}(t)$ is the average fitness of P at t

What proportion of population will be s_i after selection?

Selection of Fit Solutions

$$\operatorname{Prop}(s_i, t+1) = \frac{m(s_i, t) f(s_i, t)}{|P|} \frac{f(s_i, t)}{\bar{f}(t)}$$

How many copies of s_i will be present in P after selection? Spin wheel P times to get the expected number E(x):

$$E(m(s_i, t+1)) = m(s_i, t) \frac{f(s_i, t)}{\bar{f}(t)}$$

-this gives exponential growth

-So fit solutions come to dominate

informatics

Solutions Sample Substrings

A chromosome can be considered as a device for sampling many different substrings – schemata – all at the same time:

11001101

is a sample of: 1 1 * * 1 1 0 *

0**1 1*****

etc.

where * is the "don't care" symbol. A string of length l samples 2^{l} schemata.

Thus, a population of n strings samples between 2^l and $n \times 2^l$ different schemata.

Gillian Hayes	GAGP Lecture 5	6th October 2006	Gillian Hayes	GAGP Lecture 5	6th October 2006

Fitness of Schemata The schema 1 1 * * 1 1 0 * is a template for the 8 strings 1 1 0 0 1 1 0 0 1 1 0 0 1 1 0 1 : 1 1 1 1 1 0 1

and any given bitstring 11001100...1 *l* bits

is an instance of 2^l schemata. There are 3^l possible schemata in total.

So if you evaluate the fitness of a bunch of strings, you are at the same time evaluating the fitness of more schemata – average fitness of a schema H is the average fitness of all instances s_i of that schema.

7 informatics

 $H_1 = 1 * * * *$, fitness =

 $H_0 = 0 * * * *$ fitness =

Selection of Fit Schemata

Fitness of Schemata If solutions s_i , s_j , s_k all sample the same schema H, we can calculate the

 $\hat{u}(H,t) = \frac{\sum f(s_i), f(s_j), f(s_k), \dots}{m(H,t)}$

average fitness $\dot{\hat{u}}$ of H from the fitnesses of the m solutions that sample it:

Given m(H,t) and $\hat{u}(H,t)$, can we calculate m(H,t+1)?

Different schemata have different average fitness:

f(x) |= x/31

10

Λ

 $\hat{u}(H,t)$ is the average fitness of H at time tm(H,t) is the number of instances of H at time t $\bar{f}(t)$ is the average fitness at time t

How many instances of ${\cal H}$ will be present in ${\cal P}$ after selection? Proportion:

$$\operatorname{Prop}(H) = \frac{m(H,t)\hat{u}(H,t)}{|P|}\frac{\hat{u}(H,t)}{\bar{f}(t)}$$

f informatics

6th October 2006

So therefore after P spins expected number is:

$$E(m(H,t+1)) = m(H,t)\frac{\hat{u}(H,t)}{\bar{f}(t)}$$

-exponential growth as before

So now we have the first component of the Schema Theorem

Selection of Fit Schemata – Example

What happens when we select and duplicate strings on the basis of fitness? Does the distribution of points in each hyperplane change accordingly?

Example: Suppose $s_i,\,s_j$ and s_k sample H. Suppose average fitness of population = 1.0 and

 $f(s_i, t) = 2.0, m(s_i, t) = 2$ $f(s_j, t) = 2.5, m(s_j, t) = 2$ $f(s_k, t) = 1.5, m(s_k, t) = 2$

So, using earlier formula for samples:

$$E(m(s_i, t+1)) = 2 \times \frac{2.0}{1.0} = 4$$

$$E(m(s_j, t+1)) = 2 \times \frac{2.5}{1.0} = 5$$

Gillian Hayes

GAGP Lecture 5

6th October 2006

 $E(m(s_k,t+1)) = 2 imes rac{1.5}{1.0} = 3$

GAGP Lecture 5

All are fitter than average, all increase their number in the population.

For schema:

Gillian Hayes

At t, m(H,t) = 6, $\hat{u}(H,t) = 2.0$, and $E(m(H,t+1)) = m(H,t)\frac{\hat{u}(H,t)}{f(t)}$

 $= 6 \times \frac{2.0}{1.0} = 12$ So number of samples of this hyperplane increases.

Schema Jargon

Number of defined bits is the **order** o(H) of the schema H:

```
11**110*
               order 5
* * * * 1 1 0 *
               order 3
```

Defining length is the distance d(H) between the first and last bits of the schema:

```
11**110*
                defining length 6
* * * * 1 1 0 *
               defining length 2
```

```
i.e. bit position of last 0/1 – bit position of first 0/1.
```

Gillian Hayes	GAGP Lecture 5	6th October 2006

14 informatics

Disruptive Effects of Mutation

• Single-point mutation, probability of applying to each bit in turn $= p_m$ o(H) is the order of H

H = * * 1 0 * 1 * *o(H) = 3 $H = 1\ 1\ 0\ 1\ *\ 1\ *\ 1$ o(H) = 6

• Probability that a bit survives is $1 - p_m$

• Flipping a defined bit always disrupts a schema, so the probability that the schema survives is:

$$\Pr(\text{survival}) = (1 - p_m)^{o(H)}$$

Disruptive Effects of Crossover

- 1-point crossover, probability p_c . d(H) is the defining length of H. H = * * 1 0 * 1 * * d(H) = 3
- In a single crossover, there are l-1 crossover points: 10100100 7 crossover points
- Of these, d(H) points will disrupt the schema.

$$\Pr(\text{disruption}) = p_c \frac{d(H)}{l-1}$$

- e.g. Suppose $p_c = 0.8, d(H) = 3, l = 100$ Pr(disruption) $= 0.8 \times \frac{3}{100} = 0.024$
- Better survival if d(H) low.

Disruptive Effects of Mutation

```
Gillian Hayes
```

GAGP Lecture 5

6th October 2006

15 informatics

is apprive Effects of Watation	
-	
e.g. Suppose $p_m = 0.01, o(H) =$	25

Pr(survival) = $(1 - 0.01)^{25} = (0.99)^{25} = 0.78$

• Best chances for surviving crossover and mutation when d(H) and o(H) are low.

So now we have the second and third parts of the schema theorem.

16 informatics

The Schema Theorem

Gathering it all together:

Number of H after selection:

$$E(m(H,t+1)) = m(H,t)\frac{\hat{u}(H,t)}{\bar{f}(t)}$$

Probability of surviving crossover:

$$\Pr(\mathbf{s}_{c}) = 1 - p_{c} \frac{d(H)}{l-1}$$

Probability of surviving mutation:

Gillian Hayes

GAGP Lecture 5 6th October 2006

17 Informatics

$$\Pr(\mathbf{s}_{\mathrm{m}}) = (1 - p_m)^{o(H)}$$

So, taking only these disruptive effects into account, we have:

$$E(m(H,t+1)) = m(H,t)\frac{\hat{u}(H,t)}{\bar{f}(t)}(1 - p_c\frac{d(H)}{l-1})[(1 - p_m)^{o(H)}]$$

But this is a lower bound. We've not taken into account fact that schema can be **created** through crossover and mutation. So we need a \geq . Finally...

Gillian Hayes

GAGP Lecture 5

6th October 2006

$$E(m(H,t+1)) \ge m(H,t)\frac{\hat{u}(H,t)}{\bar{f}(t)}(1-p_c\frac{d(H)}{l-1})[(1-p_m)^{o(H)}]$$

Highest when

- $\hat{u}(H,t)$ is large fit
- d(H) is small short
- o(H) is small small number of defined bits

Next lecture: so what?