Genetic Algorithms and Genetic Programming Lecture 5

Gillian Hayes
6th October 2006

informatics

Selection of Fit Solutions

How do fit solutions come to be selected when we're doing fitness-proportionate selection?
Consider a large population P of solutions at time t.
Consider solution s_{i} :
$f\left(s_{i}, t\right)$ is the fitness at t
$m\left(s_{i}, t\right)$ is the number of copies of s_{i} in P at t
$\bar{f}(t)$ is the average fitness of P at t

What proportion of population will be s_{i} after selection?

The Schema Theorem

How Do Gr ${ }^{\text {Gr }}$ As Work?

- Selection of fit solutions
- Selection of fit substrings - schemata
- Disruptive effects
- The Schema Theorem

$$
E(m(H, t+1)) \geq \frac{\hat{u}(H, t)}{\bar{f}(t)} m(H, t)\left(1-p_{c} \frac{d(H)}{L-1}\right)\left[\left(1-p_{m}\right)^{o(H)}\right]
$$

$\overline{\text { Gillian Hayes }}$
GAGP Lecture 5
6th October 2006
$\overline{\text { Selection of Fit Solutions }} 3$ informátics

$$
\operatorname{Prop}\left(s_{i}, t+1\right)=\frac{m\left(s_{i}, t\right)}{|P|} \frac{f\left(s_{i}, t\right)}{\bar{f}(t)}
$$

How many copies of s_{i} will be present in P after selection? Spin wheel P times to get the expected number $E(x)$:

$$
E\left(m\left(s_{i}, t+1\right)\right)=m\left(s_{i}, t\right) \frac{f\left(s_{i}, t\right)}{\bar{f}(t)}
$$

-this gives exponential growth
-So fit solutions come to dominate

Solutions Sample Substrings

A chromosome can be considered as a device for sampling many different substrings - schemata - all at the same time:

11001101
is a sample of:
$11^{* *} 110^{*}$
** $0 * * * * 1$
$1 * * * * * * *$
etc.
where ${ }^{*}$ is the "don't care" symbol. A string of length l samples 2^{l} schemata.
Thus, a population of n strings samples between 2^{l} and $n \times 2^{l}$ different schemata.
$\overline{\text { Gillian Hayes }}$
GAGP Lecture 5
6th October 2006

Fitness of Schemata

The schema

$$
11^{* *} 110 \text { * }
$$

is a template for the 8 strings
11001100
11001101
11111101
and any given bitstring $11001100 \ldots 1 \quad l$ bits
is an instance of 2^{l} schemata. There are 3^{l} possible schemata in total.
So if you evaluate the fitness of a bunch of strings, you are at the same time evaluating the fitness of more schemata - average fitness of a schema H is the average fitness of all instances s_{i} of that schema.

Fitness of Schemata

If solutions s_{i}, s_{j}, s_{k} all sample the same schema H, we can calculate the average fitness \hat{u} of H from the fitnesses of the m solutions that sample it:

$$
\hat{u}(H, t)=\frac{\sum f\left(s_{i}\right), f\left(s_{j}\right), f\left(s_{k}\right), \ldots}{m(H, t)}
$$

Different schemata have different average fitness:

$$
H_{1}=1 * * * *, \text { fitness }=
$$

$$
H_{0}=0 * * * *, \text { fitness }=
$$

$\overline{\text { Gillian Hayes }}$
GAGP Lecture 5
6th October 2006

Selection of Fit Schemata

Given $m(H, t)$ and $\hat{u}(H, t)$, can we calculate $m(H, t+1)$?
$\hat{u}(H, t)$ is the average fitness of H at time t $m(H, t)$ is the number of instances of H at time t $\bar{f}(t)$ is the average fitness at time t

How many instances of H will be present in P after selection? Proportion:

$$
\operatorname{Prop}(H)=\frac{m(H, t)}{|P|} \frac{\hat{u}(H, t)}{\bar{f}(t)}
$$

So therefore after P spins expected number is:

$$
E(m(H, t+1))=m(H, t) \frac{\hat{u}(H, t)}{\bar{f}(t)}
$$

-exponential growth as before

So now we have the first component of the Schema Theorem

$$
E\left(m\left(s_{k}, t+1\right)\right)=2 \times \frac{1.5}{1.0}=3
$$

All are fitter than average, all increase their number in the population.

For schema

$$
\begin{aligned}
& \text { At } t, m(H, t)=6, \hat{u}(H, t)=2.0, \text { and } \\
& \quad E(m(H, t+1))=m(H, t) \frac{\hat{u}(H, t)}{f(t)} \\
& \quad=6 \times \frac{2.0}{1.0}=12
\end{aligned}
$$

So number of samples of this hyperplane increases.

Selection of Fit Schemata - Example

What happens when we select and duplicate strings on the basis of fitness? Does the distribution of points in each hyperplane change accordingly?
Example: Suppose s_{i}, s_{j} and s_{k} sample H. Suppose average fitness of population $=1.0$ and

$$
\begin{aligned}
& f\left(s_{i}, t\right)=2.0, m\left(s_{i}, t\right)=2 \\
& f\left(s_{j}, t\right)=2.5, m\left(s_{j}, t\right)=2 \\
& f\left(s_{k}, t\right)=1.5, m\left(s_{k}, t\right)=2
\end{aligned}
$$

So, using earlier formula for samples:

$$
\begin{aligned}
& E\left(m\left(s_{i}, t+1\right)\right)=2 \times \frac{2.0}{1.0}=4 \\
& E\left(m\left(s_{j}, t+1\right)\right)=2 \times \frac{2.5}{1.0}=5
\end{aligned}
$$

Gillian Hayes

Disruption of Schemata

Crossover and mutation are both disruptive and constructive with regard to schemata. Consider only disruptive effects:
Crossover:
$11 * * * * * * \quad$ Probability of disruption in crossover is?

Mutation
$110010011101^{* *}$
Many disruptive possibilities
11 *****1
Only 4 disruptive possibilities

Schema Jargon

Number of defined bits is the order $o(H)$ of the schema H :

$$
\begin{aligned}
& 11 * * 110{ }^{*} \quad \text { order 5 } \\
& * * * * 110 * \\
& \text { order } 3
\end{aligned}
$$

Defining length is the distance $d(H)$ between the first and last bits of the schema:

$$
\begin{aligned}
& 11^{* *} 110^{*} \quad \begin{array}{l}
\text { defining length } 6 \\
* *^{*} \\
\hline
\end{array} 1100^{*} \quad \begin{array}{l}
\text { defining length } 2
\end{array}
\end{aligned}
$$

i.e. bit position of last $0 / 1-$ bit position of first $0 / 1$.

Disruptive Effects of Mutation

- Single-point mutation, probability of applying to each bit in turn $=p_{m}$ $o(H)$ is the order of H

$$
\begin{aligned}
& H=* * 10 * 1 * * \quad o(H)=3 \\
& H=1101^{*} 1^{*} 1 \quad o(H)=6
\end{aligned}
$$

- Probability that a bit survives is $1-p_{m}$
- Flipping a defined bit always disrupts a schema, so the probability that the schema survives is:

$$
\operatorname{Pr}(\text { survival })=\left(1-p_{m}\right)^{o(H)}
$$

Disruptive Effects of Crossover

- 1-point crossover, probability p_{c}.
- $d(H)$ is the defining length of H $H={ }^{*}{ }^{*} 10$ * 1 ** $d(H)=3$
- In a single crossover, there are $l-1$ crossover points:

$$
10100100 \quad 7 \text { crossover points }
$$

- Of these, $d(H)$ points will disrupt the schema.

$$
\operatorname{Pr}(\text { disruption })=p_{c} \frac{d(H)}{l-1}
$$

e.g. Suppose $p_{c}=0.8, d(H)=3, l=100 \quad \operatorname{Pr}($ disruption $)=0.8 \times \frac{3}{100}=0.024$

- Better survival if $d(H)$ low.

Gillian Hayes
GAGP Lecture 5
6th October 2006
$\overline{\text { Disruptive Effects of Mutation }}$
e.g. Suppose $p_{m}=0.01, o(H)=25$
$\operatorname{Pr}($ survival $)=(1-0.01)^{25}=(0.99)^{25}=0.78$

- Best chances for surviving crossover and mutation when $d(H)$ and $o(H)$ are low.

So now we have the second and third parts of the schema theorem.

The Schema Theorem

Gathering it all together:
Number of H after selection:

$$
E(m(H, t+1))=m(H, t) \frac{\hat{u}(H, t)}{\bar{f}(t)}
$$

Probability of surviving crossover:

$$
\operatorname{Pr}\left(\mathrm{s}_{\mathrm{c}}\right)=1-p_{c} \frac{d(H)}{l-1}
$$

Probability of surviving mutation:

${ }_{18}$ informadics

The Schema Theorem

$$
E(m(H, t+1)) \geq m(H, t) \frac{\hat{u}(H, t)}{\bar{f}(t)}\left(1-p_{c} \frac{d(H)}{l-1}\right)\left[\left(1-p_{m}\right)^{o(H)}\right]
$$

Highest when

- $\hat{u}(H, t)$ is large - fit
- $d(H)$ is small - short
- $o(H)$ is small - small number of defined bits

Next lecture: so what?

$$
\operatorname{Pr}\left(\mathrm{s}_{\mathrm{m}}\right)=\left(1-p_{m}\right)^{o(H)}
$$

So, taking only these disruptive effects into account, we have:

$$
E(m(H, t+1))=m(H, t) \frac{\hat{u}(H, t)}{\bar{f}(t)}\left(1-p_{c} \frac{d(H)}{l-1}\right)\left[\left(1-p_{m}\right)^{o(H)}\right]
$$

But this is a lower bound. We've not taken into account fact that schema can be created through crossover and mutation. So we need $a \geq$.
Finally...
$\overline{\text { Gillian Hayes }}$
GAGP Lecture 5
6th October 2006

