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The Schema Theorem

or
How Do GAs Work?

• Selection of fit solutions

• Selection of fit substrings – schemata

• Disruptive effects

• The Schema Theorem

E(m(H, t + 1)) ≥
û(H, t)

f̄(t)
m(H, t)(1 − pc

d(H)

L − 1
)[(1 − pm)o(H)]

Gillian Hayes GAGP Lecture 5 6th October 2006

2

Selection of Fit Solutions

How do fit solutions come to be selected when we’re doing fitness-proportionate
selection?

Consider a large population P of solutions at time t.

Consider solution si:

f(si, t) is the fitness at t

m(si, t) is the number of copies of si in P at t

f̄(t) is the average fitness of P at t

What proportion of population will be si after selection?
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Prop(si, t + 1) =
m(si, t)

|P |

f(si, t)

f̄(t)

How many copies of si will be present in P after selection? Spin wheel P times
to get the expected number E(x):

E(m(si, t + 1)) = m(si, t)
f(si, t)

f̄(t)

–this gives exponential growth

–So fit solutions come to dominate
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Solutions Sample Substrings
A chromosome can be considered as a device for sampling many different
substrings – schemata – all at the same time:

1 1 0 0 1 1 0 1

is a sample of:

1 1 * * 1 1 0 *
* * 0 * * * * 1
1 * * * * * * *
etc.

where * is the “don’t care” symbol. A string of length l samples 2l schemata.

Thus, a population of n strings samples between 2l and n×2l different schemata.
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Fitness of Schemata
If solutions si, sj, sk all sample the same schema H, we can calculate the
average fitness û of H from the fitnesses of the m solutions that sample it:

û(H, t) =

∑
f(si), f(sj), f(sk), . . .

m(H, t)

Different schemata have different average fitness:

31
x

1.0

0
0

f(x) = x/31

H1 =1 * * * *, fitness =
H0 =0 * * * *, fitness =
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The schema

1 1 * * 1 1 0 *

is a template for the 8 strings

1 1 0 0 1 1 0 0
1 1 0 0 1 1 0 1
...
1 1 1 1 1 1 0 1

and any given bitstring 1 1 0 0 1 1 0 0 . . . 1 l bits

is an instance of 2l schemata. There are 3l possible schemata in total.

So if you evaluate the fitness of a bunch of strings, you are at the same time
evaluating the fitness of more schemata – average fitness of a schema H is the
average fitness of all instances si of that schema.
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Selection of Fit Schemata

Given m(H, t) and û(H, t), can we calculate m(H, t + 1)?

û(H, t) is the average fitness of H at time t

m(H, t) is the number of instances of H at time t

f̄(t) is the average fitness at time t

How many instances of H will be present in P after selection?

Proportion:

Prop(H) =
m(H, t)

|P |

û(H, t)

f̄(t)
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So therefore after P spins expected number is:

E(m(H, t + 1)) = m(H, t)
û(H, t)

f̄(t)

–exponential growth as before

So now we have the first component of the Schema Theorem
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Selection of Fit Schemata – Example
What happens when we select and duplicate strings on the basis of fitness? Does
the distribution of points in each hyperplane change accordingly?

Example: Suppose si, sj and sk sample H. Suppose average fitness of population
= 1.0 and

f(si, t) = 2.0,m(si, t) = 2
f(sj, t) = 2.5, m(sj, t) = 2
f(sk, t) = 1.5, m(sk, t) = 2

So, using earlier formula for samples:

E(m(si, t + 1)) = 2 × 2.0
1.0 = 4

E(m(sj, t + 1)) = 2 × 2.5
1.0 = 5
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E(m(sk, t + 1)) = 2 × 1.5
1.0 = 3

All are fitter than average, all increase their number in the population.

For schema:

At t, m(H, t) = 6, û(H, t) = 2.0, and

E(m(H, t + 1)) = m(H, t)û(H,t)

f̄(t)

= 6 × 2.0
1.0 = 12

So number of samples of this hyperplane increases.
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Disruption of Schemata
Crossover and mutation are both disruptive and constructive with regard to
schemata. Consider only disruptive effects:

Crossover:

1 1 * * * * * * Probability of disruption in crossover is?

1 * * * * * * 1

Mutation:

1 1 0 0 1 0 0 1 1 1 0 1 * * Many disruptive possibilities

1 1 * * * * * 1 1 * * * * * Only 4 disruptive possibilities
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Schema Jargon

Number of defined bits is the order o(H) of the schema H:

1 1 * * 1 1 0 * order 5
* * * * 1 1 0 * order 3

Defining length is the distance d(H) between the first and last bits of the
schema:

1 1 * * 1 1 0 * defining length 6
* * * * 1 1 0 * defining length 2

i.e. bit position of last 0/1 − bit position of first 0/1.
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Disruptive Effects of Crossover

• 1-point crossover, probability pc. • d(H) is the defining length of H.

H = * * 1 0 * 1 * * d(H) = 3

• In a single crossover, there are l − 1 crossover points:

1 0 1 0 0 1 0 0 7 crossover points

• Of these, d(H) points will disrupt the schema.

Pr(disruption) = pc

d(H)

l − 1

e.g. Suppose pc = 0.8, d(H) = 3, l = 100 Pr(disruption) = 0.8 × 3
100 = 0.024

• Better survival if d(H) low.
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Disruptive Effects of Mutation

• Single-point mutation, probability of applying to each bit in turn = pm

o(H) is the order of H

H = * * 1 0 * 1 * * o(H) = 3
H = 1 1 0 1 * 1 * 1 o(H) = 6

• Probability that a bit survives is 1 − pm

• Flipping a defined bit always disrupts a schema, so the probability that the
schema survives is:

Pr(survival) = (1 − pm)o(H)
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e.g. Suppose pm = 0.01, o(H) = 25
Pr(survival) = (1 − 0.01)25 = (0.99)25 = 0.78

• Best chances for surviving crossover and mutation when d(H) and o(H) are

low.

So now we have the second and third parts of the schema theorem.
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The Schema Theorem

Gathering it all together:

Number of H after selection:

E(m(H, t + 1)) = m(H, t)
û(H, t)

f̄(t)

Probability of surviving crossover:

Pr(sc) = 1 − pc

d(H)

l − 1

Probability of surviving mutation:
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Pr(sm) = (1 − pm)o(H)

So, taking only these disruptive effects into account, we have:

E(m(H, t + 1)) = m(H, t)
û(H, t)

f̄(t)
(1 − pc

d(H)

l − 1
)[(1 − pm)o(H)]

But this is a lower bound. We’ve not taken into account fact that schema can be
created through crossover and mutation. So we need a ≥.

Finally...
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The Schema Theorem

E(m(H, t + 1)) ≥ m(H, t)
û(H, t)

f̄(t)
(1 − pc

d(H)

l − 1
)[(1 − pm)o(H)]

Highest when

• û(H, t) is large – fit

• d(H) is small – short

• o(H) is small – small number of defined bits

Next lecture: so what?
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