Appendix A

Some notes on experiments and
statistics

A.1 Various Types of Experimentation

Science proceeds by selecting research questions, devising hypotheses (i.e. possible
answers to these questions), and then experimentally seeking evidence to support or
refute the hypotheses. What research questions are interesting, and the general class
of methods appropriate for answering them, are defined by a scientific paradigm. If
you read scientific papers or follow popular science you could be forgiven for supposing
that hypotheses are obvious — the popular view is that scientific conclusions are
“natural laws” and carry some necessary rightness, the truth is that they are tentative
conclusions not yet shown to be wrong. Some have endured for hundreds of years
without contradiction; this doesn’t prove their truth, but we can be confident that
they work in most situations we are likely to encounter.

But where do hypotheses come from? If they aren’t immediately obvious once
the research question is posed (they aren’t), how do scientists find them? The answer
is that they guess, make them up, use their imaginations, mess around for a while
to see what’s going on, or just have accidents (many of the most profound scientific
discoveries have been the result of careful work investigating a surprising accident).
The scientific process or method deals with weeding out the incorrect hypotheses —
we are free to find hypotheses where we can.

In the light of this experiments fall into two broad categories: exploratory
studies, where you are not certain what you are looking for (a kind of disciplined
messing-about); and confirmatory studies, where you are trying to answer a care-
fully formulated experimental question relevant to your research question. Explor-
atory studies generate data which raises interesting questions, suggest relationships

OThis chapter was almost entirely taken from notes by John Hallam
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between aspects of the system being investigated, and allow important parameters
to be quantified. The results of exploratory studies are preliminary models of what
causes what, or what influences what, and more precise questions to ask to narrow
further the range of possibilities; they are indications of what aspects of the behaviour
of a system are interesting and of where to look next.

Confirmatory experiments follow from exploration. A precise and specific ques-
tion is formulated based on the results of exploratory work and the hypotheses they
suggest; an experiment is designed to answer that question; and serious thought
is given to whether the answer provided by the experiment is unique (there may be
more than one explanation for a set of results; the best-designed experiments produce
results consistent with just one explanation).

Another useful way of categorising experiments, independent of the exploratory-
confirmatory division, is as observation or manipulation experiments. In the latter
case, the experimental structure looks at the influence some factor has on some output,
and proceeds by altering the factor in a controlled way and measuring the resulting
changes of the output. The factor is manipulated by the experimenter.

Observation experiments are done when the factor cannot be manipulated, for
example when the subjects are people and it is impossible or unethical to manipulate
them in the necessary way (e.g. one cannot make people have sisters to see whether
the number of sisters one has affects one’s performance at hang gliding). In these
experiments a population is divided into groups using the factor(s) of interest so
that each group’s members have the same combination of factors (other criteria for
selecting groups may also apply, see below), and we look for differences in the output
between the groups. These differences, we hope, are the result of the groups’ differing
constitution.

A.2 What to Do with Data

Experimental results are data — often numerical representations of the behaviour of
the system we are trying to investigate. What can we do with such data? What form
can the data take? How can we analyse it? These are the questions we consider in
this section.

It is worth stressing that data is only a representation of reality and, as such,
it is coloured by our presuppositions about the nature of reality. Because of this, we
must be careful how we deal with data. Consider the example below (from Tukey),
where the following sequence of numerical data was obtained by experiment:

4793411121304 1015121317 ...

What can we do with this? One possibility is to look for trends (maybe by curve-
fitting); it is fairly obvious that the early data are around 3-9 and the later data
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12-17, say. But what do we do about 13047 If we believe the data should have
a smooth trend, we could argue that 1304 is an anomaly, a spurious datum to be
ignored. If we have no such prior belief, we must account for it some other way. The
point is that the data just is; what we think it means depends on what we believe
about the reality it represents and the encoding process by which it was obtained.

A.2.1 Types of Data

Data comes in three qualitatively distinct types, the distinction being to do with how
data items inter-relate. The three are categorial, ordinal and numerical.

Categorial data falls into a set of classes. For instance, we may record data about
the weather by classing each day as ‘bright’, ‘cloudy’, ‘wet’ etc. The datum is
the class.

Ordinal data can be put in order or ranked. For example, days could be classified
as ‘cold’, ‘warm’ or ‘hot‘, with ranking in that order (so ‘cold’ < ‘warm’ <
‘hot’).

Numerical data comprises numbers, for instance recording the actual temperature
each day would generate this kind of data. Numerical data is probably the
most common type, but is also the most abused. The problem is that when
interpreting numbers we need to know what kinds of comparison are valid,
where the origin of the scale is, and so on.

A.2.2 Tools for Analysing Data

In addition to the distinction between types of data, we can also say that data nor-
mally comes in sets. A single experiment may involve running a variety of tests,
or repeating a certain test a number of times, and the resulting collection of data
needs to be analysed. What we do then will depend on whether the experiment is
exploratory or confirmatory.

In general, visualisation techniques are used for exploratory data. These tech-
niques try to make the patterns within a set of data apparent to the human analyst,
by displaying visually (or aurally, or in other ways) the relationships between dif-
ferent data variables. There are various tools for doing this, of which a useful one
is MATLAB, a matrix manipulation system with excellent graphical display abilit-
ies. Apparent interrelationships (effects) can be confirmed using simple statistical
techniques.

For confirmatory experiments, statistical testing allows us to determine the
precise extent to which a particular effect we anticipated is present in the data from
our experiment. Visualisation plays a much less significant role here, though we may
need to produce pictures or other summaries of our data for reporting our results.
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A.2.3 Looking for Effects

Suppose we have a collection of data from an exploratory experiment and want to
examine it to see whether any effects are apparent. What can we do? Before we look
at this question, let’s introduce some jargon:

e A population is the set of all instances of items of interest. For example, the set
of all A. 1. students, the set of all runs of a program with a certain parameter
setting, the set of all runs of that same program for any parameter settlings,
and so on. Typically, an interesting population will be too large for us to study
it exhaustively.

e A sample is a subset of the population, chosen by some means, small enough to
work with, from which we hope to draw conclusions about the population as a
whole. For instance, we could regard the set of all A. I. students as a sample of
the population of Edinburgh University Science students, who are themselves a
sample of the set of Edinburgh University students; or we could take 100 runs
of a program with a given set of parameters as a sample of all possible runs
of that program with those parameters. This latter example makes sense only
if we cannot predict exactly what output a single run of the program will give
(more of this below).

The idea of a sample raises certain difficulties. If we wish to extrapolate con-
clusions obtained from the sample to the population of which it is a sample,
the clearly the sample must be representative. It is unlikely that students tak-
ing A. I. are representative of students at Edinburgh University — there is no
reason why they should be ‘typical’, and we could not accept such a sample as
representative without further evidence. On the other hand, a random sample
of, say, 20 AIl students could be considered representative of the whole class.

The two key questions that arise are: How is the sample to be selected? and How
large must the sample be? The general answer to the former is that selection
must ensure a representative sample, for the purposes of the experiment at
hand (it need not necessarily be representative in other ways, provided that
those other ways are unrelated to the effects being investigated, and random
samples are not necessarily representative), and that the larger the sample the
more work is involved but the more secure the conclusions will be.

e A statistic is a numerical encoding of some property of a population or sample,
which we hope is characteristic of that population or sample, and which we
can use instead of the sample for reasoning about the properties of the sample.
For instance, the average age of students taking AIl is such a statistic: it
summarizes certain properties of the population of such students. Statistics is
the subject that studies the properties of such encodings.
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To return to the main question, what can we do with data from our exploratory
experiments? There are various ways to visualise such data to make relationships
apparent. Here are a few:

Histograms record how many data fall into each of a number of classes. For instance,
we might record the temperature at noon each day for a year, and then count
how many days there were whose recorded temperature was between 16 and
17° Celsius, how many between 17 and 18, how many between 18 and 19, and
so on. A plot of the number of days in each category (vertical axis) against the
various categories (horizontal axis) is a histogram, and shows the distribution
of the data, that is, how likely a randomly chosen value from the set is to be in
each category.

One sign in a histogram of something going on is for there to be multiple
peaks. This means that there are two or more clusters of similar data, and
it is possible that some cause other than chance determines in which cluster
a particular datum will lie. Splitting the whole set of data into the clusters
associated with the peaks then allows you to investigate whether members of
the clusters differ from each other in consistent ways.

For example, the temperatures histogram might show a peak at around 25° and
another at 16° with a trough in between. On investigation, you find that all
the days in the former cluster are noted as ‘bright’ while most of those in the
latter cluster are ‘cloudy’. You can now infer, tentatively, that bright days are
hotter than cloudy ones for some reason.

Scatter Plots allow you to look at data in more than one dimension at once. For
example, suppose you collect data from a large group of people: for each person,
you record age, height and weight. This gives you a large set of triples of
numbers. Consider plotting these numbers as points in space — draw three
axes at right angles to each other, and consider the triples as specifying the
coordinates of a point with respect to those axes'. This procedure scatters
points, one for each datum in the set, over the space spanned by the axes.

If there is no relationship between the individual measurements, the points
ought to be scattered randomly (therefore approximately evenly) throughout
the space. On the other hand, if there is an effect, the points will be clustered
more densely in parts of the space — in the example above points will tend
to cluster along a line sloping upward away from the origin with a sharpish
bend in it, since age, height and weight are related loosely proportionately for

'If you aren’t happy with three dimensions, imagine drawing a graph with age as horizontal axis
and height as vertical axis, and marking in those points given by the age-height numbers in each
triple.
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young people (the older a person, the taller and heavier they are), and then
height and weight become roughly independent of age for older people. If you
had also noted the gender of each person and were to colour the points in the
scatter plot red for male and green for female, say, you would also notice that
the relationships between the three variables differ slightly between the sexes.
Scatter plots, with or without colour, make these kind of relationships visually
obvious.

Summary Statistics express a property of the data set in a single number or set
of a few numbers. There are many such statistics. The most common are the
mean, mode, median, variance and standard deviation. Interquartile range is
also used. For a fuller discussion of these and a few others, consult Cohen’s
book (section 2.3.2, pages 23-27). Here we just note the following:

e The mean T of a set of N items of data is obtained by adding up the items
and dividing by N. It represents the centre of mass of the distribution of
the data, and is the value you might expect to get if you generate another
datum with no other information about it2.

e The variance of a set of data, written o2, is computed as follows. Calculate
the mean of the data set. For each data item, work out its deviation from
the mean. Sum the squares (since we don’t care which way the datum
deviates) of all these deviations, and divide by N or N — 1 to get the
variance. It measures the spread of the data away from the mean: wide
distributions, with members likely to be far from the mean, have high
variance, while tight distributions where all are close to the mean have
low variance.

The only subtlety here is whether to divide by N or N — 1. The simple
answer is that if the data set is the whole population, divide by N; otherwise

N —1.
The standard deviation of the data is the square root of the variance, i.e.
0.

e The standard error is given by \/Lﬁ for N data with standard deviation o.
It measures the amount of variation we may expect in the mean of the
data.

This is quite a subtle idea. If an individual experiment gives a result z, say,
and repeating the experiment gives a somewhat different result because

2but note that the mean value may not be a possible outcome — e.g. consider the mean value
of throws of an unbiased six-sided die (which is 3.5). More correctly, the outcome of an individual
experiment can be thought of as a ‘known value’ plus some ‘random error’  using the mean as the
‘known value’ makes the size of the random variation least (in the sense of having least variance).
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of randomness or other variation in conditions, the mean indicates what
result we expect on average and the variance tells us how close actual
results will be to that average one. However, if we only have a sample of the
population, we don’t know the true average, only that of the sample, and
the value of the sample average depends on the particular sample we have
chosen. In other words, the experiment of doing N tests and computing
the mean result z of them will also give a different answer each time we do
it, depending on exactly which N tests we do out of the whole population.
We need to know how much variation to expect in the sample mean.

Intuitively, the mean is the average of a collection of data. If the variations
in the data are independent of each other, we might expect them to cancel
out to some extent in the averaging, like a tug-of-war team pulling in
different directions instead of together. This is exactly what happens,
and the standard error tells us how much ‘cancelling-out’ takes place: the
variance of the mean is % of the variance of the individual data, and the
standard error (or standard deviation of the mean) is thus \/I—N times that

of the individual data.

Incidentally, the fact that not all the variation cancels out in the averaging
process that yields the mean is the reason for division by N —1 to calculate
the variance of a sample. Deviations are measured from the mean of
the sample, and that contains variation from the true mean which is not
independent of the variations in the data themselves. The deviations are
all a bit smaller than they ought to be, because of this, and the effect is
that N — 1 units of variation rather than N (one per datum) are included
in the sum of square deviations, the missing one being cancelled by the
variation in the mean.

A.2.4 Statistical Measures of Independence

Given histograms, scatter plots and summary statistics, how can we look for effects in
our data. In general, we look for suspicious data: we assume that nothing is going on,
that no effects are present, that our data are independent of the factors that might
influence them, and we search for evidence that we are wrong. Note that the whole of
statistical testing is based on this approach: assume no effect and look for evidence
to the contrary.

What signs are there of independence or otherwise in our data? Consider scatter
plots first. Independent data results in points that spread uniformly over the plot
or that line up parallel to the axes (so that one variable effectively remains constant
as the other changes widely). However, suppose a scatter plot looks suspicious —
the data seem to line up in an interesting way, but the pattern is not clearly visible
because of the variation in the data. One option is to use a statistical measure, linear
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correlation, to assess how likely the data are to be interrelated.
Linear correlation measures how well the data fit the model of a straight line
relationship. It is computed thus:

(1) Compute the means of the x and y data from the scatter plot separately.

(2) For each point in the scatter plot (pair of data) calculate the deviation of each
datum from its mean and multiply, that is, compute (z — z)(y — y).

(3) Sum these products for all the data pairs and divide by N — 1 for N data.

(4) Work out the standard deviation of z and y separately, and divide the sum
from step 3 by the product of these standard deviations.

The result of this procedure is a number called Pearson’s Correlation Coefficient,
that lies between +1, and measures how well the data fit the straight line model it
assumes. Intuitively, if the data fit a straight line rising to the right, an x larger than
its mean will tend to be associated with a y larger than its mean, while an z less than
its mean is paired with a y smaller than its mean; thus the deviation products tend
to be positive, and the resulting correlation will be bigger than zero. Dividing by the
standard deviations removes any dependence on the size of the data themselves.

A value of +1 represents perfect proportional increase between x and y while
—1 represents perfect proportional decrease of y for increase of z. Rarely do we get
values as obvious as this; but given a little more computation or a book of statistical
tables we can also find the chance that independent random data would generate a
correlation value at least as large as our data — if this chance is very small we can
be correspondingly sure that our data really is correlated and infer, tentatively, that
the data are related.

A final comment on correlation: just because two variables are correlated
doesn’t mean that one causes the other. For instance, time spent watching tele-
vision and incidence of lung cancer are correlated, but neither causes the other: both
are caused by economic factors providing people with leisure time and money to buy
cigarettes! Statistical dependence is not the same thing as causal dependence.

Correlation works for scatter plots, but maybe our data is not of that type. For
example, in class we collected a set of data as follows. Each person present at a certain
lecture chose a number between 1 and 10. The number of people selecting each was
recorded for three categories of people: AI/CS degree students, AI/Psychology degree
students, and Other Al students. The results are reproduced below. Something seems
to be going on here, given the preponderance of people choosing 7. But maybe this is
just luck. We can also see that each of the three groups of people singled out in this
experiment are reacting similarly, which reassures us. But can we be more precise?
And what if the data had been less obvious — is there some procedure that will
highlight things for us to consider?
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1 2 3 4 5 6 7 8 9 10| Total
AI/CS 1 3 2 3 2 3 10 2 2 1 29
AI/PS 1 0 2 1 2 1 4 1 1 1 14
Al/Other | 2 0 1 1 0 1 6 3 3 1 18
Class 4 3 5 5 4 5 20 6 6 3 61

The answer to these questions is ‘yes’: a simple statistical test will tell us how
likely it is that these data could arise by chance if no effect were present. This test
is called the y? test, and it is one way of measuring the similarity of distributions of
data.

We proceed as follows. First, as usual, suppose there is no effect present, and
our data are independent. Let’s just consider the bottom line of the table for the
moment (labelled ‘Class’). If the number chosen were genuinely random, we would
expect around % of the class to choose each number. We can make a table of expec-
ted frequencies, and actual frequencies, with which each number was selected. The

1 2 3 4 5 6 7 8 9 10 | Total
Expected | 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 6.1 61
Class 4 3 5 5 4 5 20 6 6 3 61

difference between the expected and actual frequencies is an indication of how much
variation is present. We square each difference, divide it by the expected frequency,
and sum across the table to obtain a single number summarizing this variation. The
number is called 2.

Now we need to work out how many degrees of freedom there are in our data.
Recall the discussion about standard deviations above: the factor N — 1 is used
because N — 1 units of variation get into the sum, rather than N — one is cancelled
out because the mean is computed from the data. Similar things go on here. For a
table such as the one above, with a single row of actual data, the number of degrees
of freedom is one less than the number of classes, i.e. 9.

This is because the total of the row is fixed (to 61) by the size of the sample.
(We are interested in knowing what other data we might have obtained from the
experiment, in a sample of the same size as the one we actually have. The answer
to this question tells us how likely the actual sample of data we have is.) Suppose
we generate another set of data by randomly varying the individual entries in the
row, and suggest that this data could have been obtained from an equivalent sample:
clearly this is only possible if the row sums to 61, as the original data does. We are
not free to alter the data as we like: our alterations must respect the constraint that
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the sample size stays constant. Thus we can only change 9 of the data freely, the last
datum being constrained to equal 61 less the sum of the other nine.

For the data above, the value of x? works out to be 36.87 and we can look this
up in statistical tables to discover that the chance of obtaining the actual frequencies
from an experiment with true frequencies equal to those expected is around 0.00004
— 1 chance in 25000. It is thus very unlikely that the frequencies are the way they are
by accident, and we can conclude that something is going on. (Of course, we don’t
know what, only that the class prefers 7 to other numbers for some reason. A more
involved exploratory study would be needed to suggest reasons for this preference.)

We could also ask whether there is any real difference in preferences between
the three categories of people identified in the experiment. To answer this, we need
to know how many people in each category might have been expected to choose each
number. We can work as follows. Consider the AI/CS group: there are 29 of them
out of 61 so they represent 47.5% of the class. Of the class as a whole, 20 out of
61 chose number 7, i.e. 32.8%. If the choice is independent of category, we would
expect the proportion of AI/CS students choosing 7 to match that of the whole class
who chose 7. In other words, of the 20 people who chose 7, 47.5% of them ought
to be AI/CS students. This gives an expected frequency of 20 times 47.5% or 9.50
students. In fact 10 chose 7 from this group. We do this calculation for each box in
the table, 30 of them in all, to get the set of expected frequencies for the experiment.
Then we calculate x? as before, for the whole table. The answer is 11.1, in fact.

How many degrees of freedom are there now? In this case, the alternative
samples we have in mind must match the real sample in size and structure, so they
will have three groups of ten class frequencies, the sizes of the groups will match the
sizes of those in our sample, the total number choosing each class will match, and the
total sample size will match. How many of the data could we vary freely, given these
conditions?

For each row, we have one constraint in that the row total is fixed; so in each
row 9 numbers are potentially free. However, each column total is fixed too, and if
we vary the first two rows, those variations fix the value of the third row. In each
column we have only 2 free numbers, not 3, because of the fixed total. Thus, for this
table, with 3 rows of data in 10 columns, we have 2 x 9 = 18 degrees of freedom.
In general, there are (r — 1)(c — 1) degrees of freedom for a table with  rows and ¢
columns (both greater than 1).

The statistical tables for x? show that there is a chance of 0.89436 of obtaining
a value of 11.1 or more with 18 degrees of freedom. In other words data like ours (or
more extreme compared to the expected frequencies) will be obtained from a sample
of the size and composition of the one we have here in 89.4% of experiments. We
have no justification for concluding that there is any difference in preference between
the three groups.

To summarize, the x? test proceeds as follows:
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(1) Assume that the data are independent.

(2) Calculate the expected frequencies of each kind of result for a sample of the same
size and composition as the one you have, given the independence assumption.
For a data table with multiple rows and columns, work out the proportion
of the whole sample each complete row represents; then for each column the
expected frequencies are computed by multiplying the column total by each of
the row proportions, as we did above. This assumes that each column splits up
by row the way the whole sample does, i.e. that row and column splitting are
independent of each other.

(3) Calculate the square deviation between corresponding actual and expected fre-
quencies, divide each by the expected frequency, and sum over the whole table.
Don’t include the totals at the ends of the rows and bottom of columns in this
calculation.

(4) Work out the degrees of freedom as described above.

(5) Consult the tables of x? distribution probabilities to find the chance that your
data could have been generated by accident given that the assumption of inde-
pendence is true.

A.3 Experimental Controls

As mentioned above, exploratory experimental work looks for suspicious data in order
to discover potential relationships between causes and effects which warrant further
investigation. Visualisation techniques allow us to spot patterns in mounds of nu-
merical data (not the most perspicuous form of data for humans — could you see
patterns in the telephone book, for instance?), while some statistical techniques can
be used to reassure us that patterns are likely to be real, or to extract patterns when
the data is less clear than the examples above. Once exploratory work is done, we
move into confirmatory experimentation, what we often think of as ‘proper science’.

In this regime, we are interested in formulating a precise experimental question
or hypothesis (suggested by our imaginative analysis of the results of our explorations)
and testing whether the evidence supports our hypothesis or not. We can think of
hypotheses in terms of factors and behaviours: all hypotheses have the form “factor X
affects behaviour Y”. For example, we might assert that living near a power cable (the
factor) increases the likelihood of your suffering from certain cancers (the behaviour);
or that setting the rate of mutation too high in a genetic algorithm (the factor) results
in slow convergence or poor solutions being found (the behaviour).

Having chosen an hypothesis, we need to design an experiment to test it (nor-
mally to disprove our hypothesis, since a positive result could be caused by something
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we haven’t thought of, but a single negative result disproves the hypothesis). This
means finding a way to answer the question “are measurements of X and Y related?”
Notice the tacit change of subject here: we don’t investigate the factors and beha-
viours directly, but rather consider measurements of them. These measurements, our
data, represent the factors and behaviours we wish to study, and clearly we must
choose them with care so that they do represent what we wish to attend to.

Given this basic strategy, there are two ways we can proceed, depending on
what we may do with factor X. The experiments that result are the observation or
manipulation experiments mentioned above.

Observation experiments are necessary when we cannot directly manipulate factor
X for some reason. In our examples above, it would be unethical to make people
live under power lines to see whether they suffer from cancer: the factor is not
manipulable in practice. There are also cases where the factor of interest is not
manipulable in principle.

In this situation, what we do is group our experimental subjects based on the
measurement, of factor X. Thus we might make two groups, one of people living
close to power lines and one of those living far from power lines, and look at
how the incidence of cancers vary between the groups.

Manipulation experiments are used when the factor of interest is directly manip-
ulable. The genetic algorithm example is such a case: we can run the program
with different values of the mutation rate parameter and see what happens?,
that is, we examine whether there is any relationship (e.g. correlation) between
the values of the measurements of the factor and those of the behaviour.

In either case, though, we have a problem. How do we know that the effects we
see (variations in the measured behaviour) are due only to our changes in the factor
of interest. There may be other factors that influence the behaviour we are interested
in, and they may contaminate our experiments. We need to consider this during
experimental design: a well-designed experiment allows us just one explanation for
the effects we see in the data it produces, while a poor design may allow many. When
you look at data, therefore, and consider people’s conclusions based on it, you need
always to ask what else (apart from what they suggest) might account for the effects
described. Consider the following quotation: do you believe its conclusions?

ALMONDS It may sound pretty nutty, but even though almonds are
very high in fat ... they may be good for your heart! A major study
of 26,000 members of the Seventh Day Adventist Church in the United

3Strictly speaking, this is not obvious — for example, it may take so long or be so costly to do
this that our sponsors will not allow us to do just what manipulations we choose, and we are forced
to use an observation experiment instead even with a computer investigation such as this one.
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States showed that those who ate almonds, peanuts and walnuts at least
six times a week had an average lifespan of seven years longer than the
general population, and a substantially lower rate of heart attack. (p.
77, The Food Medicine Bible, by Earl Mindell and Carol Colman, 1994.)

The problem is that, with the data as presented here, we cannot draw the
conclusion that almonds are good for you! What other possibilities are there? Well,
peanuts or walnuts might be good for you instead; or it might require a combination
of nuts to achieve beneficial results; or maybe you need to become a Seventh Day
Adventist in order to live longer; or maybe something else is going on.

To resolve these issues we would need to do more experiments (or do this one
more carefully). We would need an experiment to demonstrate that it was the almonds
which accounted for the healthier people and not the other nuts; and we would need
an experiment to demonstrate that the comparison between Seventh day Adventists
and the general population was a fair one — for perhaps Seventh Day Adventists are
atypical people in some way related to health and heart disease.

Such experiments are called control experiments, or just controls, and their pur-
pose is to eliminate alternative explanations of the data obtained from an experiment.
They are vitally important: many an interesting experiment has been rendered useless
by poor controls.

Let’s consider this further. Apart from the factor we are interested in, there
will typically be other factors that may affect the behaviour we are investigating. If
we call the particular factor we wish to study the independent variable (the thing we
can vary as we choose) and the behaviour of interest the dependent variable (because
it depends on the factor(s)), then the other factors are extraneous variables, things
that vary without our particularly wanting them to. Variations in extraneous variables
cause disturbances in the dependent variable; control experiments also try to eliminate
these disturbances by controlling the extraneous variables in some way.

Three straightforward ways of controlling for extraneous variation are

e Make the extraneous variable an independent one, that is, include it in the
experiment. For manipulation experiments, this means varying the value of
the extraneous variable together with that of the independent variable we are
interested in. Effectively, we investigate two variables rather than one. Obvi-
ously, this is only possible if we can actually control the factor concerned and
if there are not too many such extraneous variables to include (because the
number of combinations of values to investigate multiply together, the amount
of work involved in adding several variables to an experimental design can be
prohibitive).

e Partition the test cases for the experiment in such as way that the extraneous
variable effects should cancel out. For example, to investigate the effect of
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gender on measured intelligence we might collect a large number of pairs of
people — one male and one female — such that each pair were as closely
matched as possible in age, socio-economic class, domestic situation, training,
etc. and argue that the differences between the members of each pair must then
be solely due to gender. This can be done for more complex cases too, and is
frequently necessary in human experimentation. Note that this is essentially
an observation experimental procedure: we cannot or chose not to manipulate
the extraneous variables, and try to minimize their effects by matching.

e Choose a random sample of the population of individuals with each of the values
of the independent variable, and compare the behaviours of these samples.
For instance, run 100 randomly different runs of a genetic algorithm for each
chosen value of mutation rate. The effects of other, extraneous, variables should
appear as random variation in the dependent variable whereas the effects of the
independent variable will not be random, and a statistical test can distinguish
them.

In this case, we must be careful that the samples really are random with respect
to the extraneous variables. If there is some non-randomness present, because
of a cause-effect relationship we don’t know about, the effects of extraneous
variables may add up or compound instead of cancelling out. This means that
we have to be very careful in selecting random samples.

Other questions to consider concern the process of measurement. How do we
choose the set of tests that vary the factor X of interest and how do we make meas-
urements of the behaviour Y we are studying. In Cohen’s book (section 3.1.2), the
MYCIN expert system is discussed as a case study illustrating these issues. For a full
discussion, consult that section. Here are a few points.

e Often, when testing a behaviour, we make up a set of test problems on which
to assess performance of our system. The system performs very well and we
are pleased, or very badly and we are distressed. But should we be? What do
these results tell us?

The answer is that it depends what we are comparing our system against. We
need to control for the possibility that the problems do not represent a fair test
of our system, that they are either so hard that no comparator system could
do well on them or so easy that any comparator system could do well.

The authors of MYCIN wanted to show (amongst other things) that the expert
system could perform as well as human experts. This was achieved by gener-
ating a set of test problems for MYCIN and for human experts. To control for
the possibilities above, human novices were also included in this comparator
set. Now if the novices and experts performed equally well on the test set, one
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might conclude that the problems were too easy (if the novices could do them)
or too hard (if neither novices nor experts could). A test set that split the
novices from the experts could be considered a fair test for the program.

e Given our test set, what do we measure? Since we are looking for systematic
variations in the behaviour, we must use a measurement procedure that doesn’t
introduce any such variation. For MYCIN, the responses it produced to the
test problems were checked by human experts. However, humans might be
prejudiced for or against the expert system (depending on their beliefs) so
they were not told which solutions were generated by MYCIN and which were
generated by the comparator set of humans. In this way their possible biasses
were controlled for by blinding them to the information which might bias their
response. The MYCIN trial was a single blind trial, since only the judges were
unaware whether a solution was human or machine generated. Double blind
trials are also widely used (for instance in drug testing or parapsychology)
when knowledge available to the subject or even to the experimenter might
cause a systematic variation in the measured effects.

To summarise this important section: experiments are indirect, working with
measurements of factors and behaviours of interest rather than the factors and be-
haviours themselves; a well-designed experiment answers its question unambiguously,
and this is achieved by careful use of controls; controls are implemented by sampling
or partitioning the experimental subjects, by careful choice of test cases and evalu-
ation procedure so that the measurements of both factor and behaviour are unaffected
by extraneous variables and are not biassed by the measurement procedures.

A.3.1 Statistical Tests for Confirmatory Experiments

One common situation with confirmatory experiments is that we wish to demonstrate
statistically that some significant effect is occurring, by showing that the results
obtained from two sets of tests are different. We discuss this case here.

Suppose, for example, that we generate a sample of 100 runs of a genetic al-
gorithm with mutation turned off and a second sample of 100 runs of the algorithm
with mutation at 2%, say. All other parameters are the same for both samples. We
record the fitness of the best individual found in each run, giving us 100 measure-
ments in each sample. Our hypothesis is that mutation contributes something to the
genetic algorithm’s search, so turning it off will have a bad effect on the performance
of the system and we believe this will be reflected in the fitness of the best individual
found during a run.

We could answer this question “Yes, mutation does help the genetic algorithm”
if we could show that the fitness of the best individual, all other things being equal,
was greater for runs with mutation on. However, the best fitness achieved is dependent
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on the other parameter settings (which we’ll ignore for the moment) and on the
random effects of selection and mutation which are built into the genetic algorithm.

A more precise question we could ask is as follows: “Given the two sets of
100 data obtained by our experimentation, what is the chance that they represent
two different samples of the same population?” The population here is the set of all
possible runs of the genetic algorithm with the parameter set we have chosen. If it is
likely that they do, then we cannot claim any significant difference in performance;
but if they appear to come from different populations (i.e. it is very unlikely they
come from the same population) then some factor must account for the difference and
mutation is the only candidate.

So, do the samples seem to have been drawn from the same population? If they
have been, they should have (for example) the same mean. However, the random
variation of the results will ensure that two samples, even of the same population, do
not yield exactly the same mean. All is not lost, though: the standard error tells us
how much variation we might expect in the mean of a sample, given the variance of
the sample and the size of the sample. Furthermore, there is a theorem (the Central
Limit Theorem) which tells us that whatever the distribution of data from which the
sample is drawn, the mean of a sufficiently large sample has a standard distribution
called the normal distribution.

Now, for an experiment whose results have the normal distribution, it is known
that 95% of all such experiments will produce an answer within 1.96 standard devi-
ations of the mean, and only 5% will produce an answer that differs more than that
from the mean*. The experiment of running N tests and taking their mean is this
kind of experiment  its result has a normal distribution, for large enough N and
the standard deviation of the mean is the standard error of the sample. Therefore,
the actual mean of the population of data from which the sample is drawn lies within
1.96 standard errors of the sample mean for 95% of the possible samples we could
make.

We can proceed as follows: for each sample of 100 runs, we calculate the mean
and the standard error, and from these we compute the range of values in which the
true mean of each sample must lie assuming that our actual samples are among the
95% of well-behaved ones. There is a 1 in 20 chance we will be wrong, and the true
mean will lie outside the interval we have computed, for each sample so there is a
roughly 1 in 20 chance that at least one of them will be bad, and around a 90% chance
that both will be good. If both are good, the two samples can only have come from
the same population if the ranges we computed overlap, since a population can have
only one mean and it must lie in both ranges. (The ranges are called 95% confidence

4In fact, we know the proportion of data that lie at more than a certain deviation from the
mean for any possible deviation. Tables of these probabilities are available, or MATLAB (or other
statistical tools) can compute them.
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intervals, as we are 95% certain the true mean lies inside them.)

The test we do, then, is this. If the intervals overlap, the samples could come
from the same population and we cannot confirm our hypothesis. On the other
hand, if the intervals do not overlap, the samples are of different populations and
our hypothesis is supported. In this latter case, there is a 5% chance we are wrong
in drawing this conclusion, as this is the chance that at least one sample is badly-
behaved in the way discussed above, i.e. the true mean of the population lies in only
one of the two ranges.

In the standard jargon of the subject, we construct a null hypothesis “No effect
is present, so both samples are from the same population” and we work out how likely
it is that we obtain the data we actually have if the null hypothesis is true. The less
likely that is, the more confident we can be about our alternative hypothesis, that (in
this example) mutation rate causes changes in search efficacy in genetic algorithms.

The test described above is a version of the Student t-test — the usual form of
this extends the reasoning above to calculate how big the confidence intervals can be
before they overlap, given the data. The wider the confidence interval, the less likely
it is that the true mean should lie outside it, so the less likely it is that a sample is
badly-behaved as described above. Properties of the distribution of means of samples
of size N allow us to relate the width of the confidence interval to the chance that
the sample is bad (i.e. that the true mean lies outside the confidence interval) for
that interval. We can work out the actual chance that both samples could have come
from a single population by expanding the confidence intervals until they just touch,
keeping the probability of badness the same for each interval. The probability of
badness when the intervals just touch is the chance that the samples come from the
same population.

A.3.2 Student’s t-test in more detail

This test compares two sets of data, of size N; with mean X; and standard deviation
s;, for 2 =1, 2. Compute:

2 (Ni—1)si+ (N —1)s3
pooled Ny + Ny — 2

Then compute:

, 1 1
sdlff = spooled(ﬁl + E)
The Student’s t statistic is then calculated from:
(X1 — Xa) — (11 — pi2)
Sdiff

t =
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To find the “level of significance” (that is, the chance that the two populations have
different means rather than being separate samples from the same population) it is
customary to consult a statistical table which, given the t value and the combined
degrees of freedom N; + Ny — 2, shows a percentage probability. The C program in
“peter/gagp/t-test.c is a complete replacement for such a table. Just compile it:

% gcc -o t-test t-test.c -Im

and then, given a t value such as 3.02 and a combined degrees of freedom of 47 (for
example because your two sample populations had sizes 25 and 24, so that 47 =
25 4+ 24 — 2), you would use it as follows:

% ./t-test -t 3.02 -d 47
Probability that true means differ = 0.995922

The underlying maths assume that the populations concerned are normally
distributed and have equal variances, but the test tolerates a cosiderable departure
from this abstract ideal pretty well. It would still be unwise to work with sample
sizes that are too small, eg less than about 10 each, or too vastly different from each
other in size.

A word of caution is in order. Suppose you had seven sets of data, and it
turned out that Student’s t test showed that there was a 95% chance that each set
had a different mean from any other. There are 21 pairs of sets, so the chance that
there are seven different means involved is 0.95?! = 0.34056. Remember, the usually-
invoked significance level of 95% is far from meaning “beyond all reasonable doubt”.
Be very cautious about multi-way applications of Student’s t. If you are interested in
comparing the means of a number of different sets of data, a more customary approach
is to conduct an ‘analysis of variance’. The idea here is to estmate variance in two
different ways. One is to look at the mean of each set, and work out the variance of
these means. The other is to work out the variance of each set, and take the mean
of them. If and only if these two quantities are very similar is it credible that all the
sets are drawn from the same (essentially normal) distribution.

The t test was developed by William S. Gosset (1876-1937) who worked for
Arthur Guinness and Son, ultimately becoming head brewer for them in London. He
published almost all his work under the pseudonym ‘Student’ in order to protect the
details of the firm’s quality control procedures from competitors.



