Software Formal Verification Revision

Paul Jackson

School of Informatics
University of Edinburgh

Formal Verification
Spring 2017

What you need to know for exam

In general exam covers
» All material from lecture slides
» All material from labs

Further specific remarks on topics in Software Verification half
follow:

)

17

SPARK verification features

» You are expected to be able to read and understand SPARK
programs at level presented in lecture and labs.
» Do need to be able to write SPARK assertions (e.g. loop
invariants, pre-conditions, post-conditions).
> Definitely review SPARK labs

3/17

SPARK tool-set

» You need to have high-level appreciation of architecture of
tool-set.

» Exam does not require specific knowledge of WhyML
language.

» Re SMT solvers and SMT-LIB

» You are expected to be able to understand SMT-LIB examples
at level of lecture presentation

> You should be familiar with the common theories SMT solvers
support (e.g. linear vs. non-linear arithmetic, integer and real
arithmetic, bitvectors, arrays, uninterpreted functions)

» Do walk through the Z3 tutorial linked-to from the course
home page.

WP-based methodology and tools

» Appreciation of methodology points is important

» No need to memorise names and capabilities of various tools

17

Programming language semantics

» Important to know the main definitions (big-step semantics,
Hoare triples, (weakest) precondition computation, VC
computation.)

» VC computation best understood intuitively - components of
VC from decomposition of control flow-graph into acyclic
segments and paths.

6

17

VC derivation via control flow graph 1

{n>0)

p:=1;

i:=0;
{p=m}lwhilei<ndop:=pxm;i=i+1
{p=m"}

p=pxm j:=i+1

17

VC derivation via control flow graph 2

Split graph at loop invariant:

i) o
P=mM assumei < n pi=pxm

p=m assume —(i < n) p=m"
P&

j—it1 P=m

17

VC derivation via control flow graph 3
For each acyclic path ¢ the VC is

{P} c{Q} = Vx. P=Pre(c, Q) ,
so the full VC is VG A VG A VG5, where

VG = Yn.n>0=1=m°
VG, = Vin,m,p.p=m =
Pre(assume i< n; p:=pxm;i:=i+1, p=m)

= Vin,m,p.p=m' =

Pre(assume i < n; p:=pxm, Pre(i :=i+1, p=m'))
= VYin,m,p.p=m =

Pre(assume i< n; p:=pxm, p=mtl)
= Vi,n,m p.p=m = Pre(assumei<n, pxm=mTth)
= Viin,mp.p=m = (i<n=pxm=mtl)

VG = Vimp.p=m = (=(i<n)=p=m"

V3 does not hold. What is missing from the loop .invariant?

SAT and SMT algorithms

» You

» You

are expected to be able to run through calculations of
basic DPLL algorithm execution (backtracking, no
backjumping)

formation of implication graphs and inference of learned
clauses, including backjumping clauses, from these graphs

should have some intuition for all the rules covered

10/17

Basic SAT algorithm derivation

Assignment Clauses Rule

M G G G Cy 1 G GCs
bvc|avbve|bvd|avbvd|aVve|aVve

O u ulu u ulu ulu u ulu ulu u

(¥} v u|l0 v viu u|0 v ul|l uv|l u Dec!dea

eaeb 0 ul00 ull w|o 1 w1 ul1 y|DecideD

eaebc 010001 |01 u|1 u|1 o|UnitProp

eab 1 ulo 1 0 w|00 u|l ull u Bafktra‘:k

eabd 1 ulo 1 0010001 u|1 u]YnitProp

a u ul|ll u v u|l v v|0 u|0 u Ba.cktrack

ae u ul|l u v ull v v|0 1]0.0 UnitProp

. Fail

fail

Derivation shows that C; A G A CG3 A G4 A Cs A Gy is unsatisfiable.

11/17

Notes

v

v

v

v

on SAT algorithm derivation

Rule priority: Fail, Backtrack, UnitPropagate, Decide
(high to low)
» See SAT-SMT slides for motivation

Each rule might be applicable in more than one way

Here:

» Decide chooses earliest unassigned literal in alphabet and
makes it un-negated
» UnitPropagate chooses clause C; with lowest index i

Underlining indicate clauses that rules operate on.

In practice, heuristics used to optimise performance. See
SAT-SMT slides.

12 /17

CBMC

» Make sure you appreciate the similarities and differences
between the CBMC approach and the SPARK toolset
approach.

» Given a simple C program decorated with one or more
assertions, you should be able to derive SMT-level VCs that
CBMC might check.

» Loop unrolling
» Static single assignment transformation
» Use of conditional expressions at merge points in control flow

13 /17

CBMC VC derivation 1
Q. Given program

int 1i;

int p;

p=1;

for (i = 0; 1 <= n; i++) {
P=p*m;

assert p >= 1;

What VC might CBMC generate, if loop is unrolled two times and
we assume loop will not execute a third time?

A. Transform first to while loop, since easier to unroll

p=1;

i = 0;

while (i <= n) {
P=p*m;
i=1i+1;

}

assert(p >= 1); 14/17

CBMC VC derivation 2

Unroll loop 2 times and add assume statement for loop exiting at
that point

p=1

i = 0;

if (i <= n) {
P =p *m
i=1+1;
if (i <= n) {

p=p*m

i=1+1;

assume('(i <= n));
}

}
assert(p >= 1);

15 /17

CBMC VC derivation 3

Assign all variables exactly once. Compute guards for conditional
statements. Add conditional expressions for merging values.

pl = 1;
il = 0;
gl = i1 <= nl;
p2 = pl *ml; // gl
i2 = i1 + 1; // gl
g2 = (i2 <= n1);
p3 =p2 *xml; // gl & g2
i3 = i2 + 1; // gl & g2
assume(!(i3 <= n1));
p4d =gl ? (g2 7 p3 : p2) : pi;
i4 = g1 7 (g2 7 i3 : i2) : il; // Optional, since i4 unused
assert(p4d >= 1);

Comments track conditions under which assignments hold and help
with computing value merge expressions.

16 /17

CBMC VC derivation 4

Convert to logical expression.

pr=1

AL =0

NgL= (i1 < n)

ANp2=p1*xm

Nipb=1ih+1

N g = (i2 <= n1)

ANp3=p2xm

ANigz=1I+1

A =(i3 < m) (translation of assume statement)
Aps=g17(827p3:p2): p1
/\i4:g1?(g2?i3:i2):i1

A —(ps > 1) (translation of assert statement)

If this is found unsatisfiable, then assertion holds.

17 /17

