
Software Formal Verification Revision

Paul Jackson

School of Informatics
University of Edinburgh

Formal Verification
Spring 2017

What you need to know for exam

In general exam covers

I All material from lecture slides

I All material from labs

Further specific remarks on topics in Software Verification half
follow:

2 / 17

Spark verification features

I You are expected to be able to read and understand Spark
programs at level presented in lecture and labs.

I Do need to be able to write Spark assertions (e.g. loop
invariants, pre-conditions, post-conditions).

I Definitely review Spark labs

3 / 17

Spark tool-set

I You need to have high-level appreciation of architecture of
tool-set.

I Exam does not require specific knowledge of WhyML
language.

I Re SMT solvers and SMT-LIB
I You are expected to be able to understand SMT-LIB examples

at level of lecture presentation
I You should be familiar with the common theories SMT solvers

support (e.g. linear vs. non-linear arithmetic, integer and real
arithmetic, bitvectors, arrays, uninterpreted functions)

I Do walk through the Z3 tutorial linked-to from the course
home page.

4 / 17

WP-based methodology and tools

I Appreciation of methodology points is important

I No need to memorise names and capabilities of various tools

5 / 17

Programming language semantics

I Important to know the main definitions (big-step semantics,
Hoare triples, (weakest) precondition computation, VC
computation.)

I VC computation best understood intuitively - components of
VC from decomposition of control flow-graph into acyclic
segments and paths.

6 / 17

VC derivation via control flow graph 1

{n ≥ 0}
p := 1 ;
i := 0 ;
{p = mi}while i < n do p := p ×m ; i := i + 1
{p = mn}

n ≥ 0

p = mi

p = mn

p := 1 i := 0
i < n

¬(i < n)

p := p ×m i := i + 1

7 / 17

VC derivation via control flow graph 2

Split graph at loop invariant:

n ≥ 0 p = mi

p = mi p = mi

p = mi p = mn

p := 1 i := 0

assume i < n p := p ×m i := i + 1

assume ¬(i < n)

8 / 17

VC derivation via control flow graph 3
For each acyclic path c the VC is

{P} c {Q} = ∀x̄ . P ⇒ Pre(c , Q) ,

so the full VC is VC1 ∧ VC2 ∧ VC3, where

VC1 = ∀n. n ≥ 0⇒ 1 = m0

VC2 = ∀i , n,m, p. p = mi ⇒
Pre(assume i < n ; p := p ×m ; i := i + 1 , p = mi)

= ∀i , n,m, p. p = mi ⇒
Pre(assume i < n ; p := p ×m , Pre(i := i + 1 , p = mi))

= ∀i , n,m, p. p = mi ⇒
Pre(assume i < n ; p := p ×m , p = mi+1)

= ∀i , n,m, p. p = mi ⇒ Pre(assume i < n , p ×m = mi+1)
= ∀i , n,m, p. p = mi ⇒ (i < n⇒ p ×m = mi+1)

VC3 = ∀i ,m, p. p = mi ⇒ (¬(i < n)⇒ p = mn

VC3 does not hold. What is missing from the loop invariant?
9 / 17

SAT and SMT algorithms

I You are expected to be able to run through calculations of
I basic DPLL algorithm execution (backtracking, no

backjumping)
I formation of implication graphs and inference of learned

clauses, including backjumping clauses, from these graphs

I You should have some intuition for all the rules covered

10 / 17

Basic SAT algorithm derivation

Assignment Clauses Rule
M C1 C2 C3 C4 C5 C6

b̄ ∨ c ā ∨ b̄ ∨ c̄ b ∨ d ā ∨ b ∨ d̄ a ∨ e a ∨ ē
() u u u u u u u u u u u u u u

•a u u 0 u u u u 0 u u 1 u 1 u
Decide a

•a • b 0 u 0 0 u 1 u 0 1 u 1 u 1 u
Decide b

•a • b c 0 1 0 0 0 1 u 0 1 u 1 u 1 u
UnitProp

•a b̄ 1 u 0 1 u 0 u 0 0 u 1 u 1 u
Backtrack

•a b̄ d 1 u 0 1 u 0 1 0 0 0 1 u 1 u
UnitProp

ā u u 1 u u u u 1 u u 0 u 0 u
Backtrack

ā e u u 1 u u u u 1 u u 0 1 0 0
UnitProp

fail
Fail

Derivation shows that C1 ∧ C2 ∧ C3 ∧ C4 ∧ C5 ∧ C6 is unsatisfiable.

11 / 17

Notes on SAT algorithm derivation

I Rule priority: Fail, Backtrack, UnitPropagate, Decide
(high to low)

I See SAT-SMT slides for motivation

I Each rule might be applicable in more than one way

I Here:
I Decide chooses earliest unassigned literal in alphabet and

makes it un-negated
I UnitPropagate chooses clause Ci with lowest index i

I Underlining indicate clauses that rules operate on.

I In practice, heuristics used to optimise performance. See
SAT-SMT slides.

12 / 17

CBMC

I Make sure you appreciate the similarities and differences
between the CBMC approach and the Spark toolset
approach.

I Given a simple C program decorated with one or more
assertions, you should be able to derive SMT-level VCs that
CBMC might check.

I Loop unrolling
I Static single assignment transformation
I Use of conditional expressions at merge points in control flow

13 / 17

CBMC VC derivation 1
Q. Given program

int i;

int p;

p = 1;

for (i = 0; i <= n; i++) {

p = p * m;

}

assert p >= 1;

What VC might CBMC generate, if loop is unrolled two times and
we assume loop will not execute a third time?

A. Transform first to while loop, since easier to unroll

p = 1;

i = 0;

while (i <= n) {

p = p * m;

i = i + 1;

}

assert(p >= 1); 14 / 17

CBMC VC derivation 2

Unroll loop 2 times and add assume statement for loop exiting at
that point

p = 1;

i = 0;

if (i <= n) {

p = p * m;

i = i + 1;

if (i <= n) {

p = p * m;

i = i + 1;

assume(!(i <= n));

}

}

assert(p >= 1);

15 / 17

CBMC VC derivation 3

Assign all variables exactly once. Compute guards for conditional
statements. Add conditional expressions for merging values.

p1 = 1;

i1 = 0;

g1 = i1 <= n1;

p2 = p1 * m1; // g1

i2 = i1 + 1; // g1

g2 = (i2 <= n1);

p3 = p2 * m1; // g1 & g2

i3 = i2 + 1; // g1 & g2

assume(!(i3 <= n1));

p4 = g1 ? (g2 ? p3 : p2) : p1;

i4 = g1 ? (g2 ? i3 : i2) : i1; // Optional, since i4 unused

assert(p4 >= 1);

Comments track conditions under which assignments hold and help
with computing value merge expressions.

16 / 17

CBMC VC derivation 4

Convert to logical expression.

p1 = 1
∧ i1 = 0
∧ g1 = (i1 ≤ n1)
∧ p2 = p1 ∗m1

∧ i2 = i1 + 1
∧ g2 = (i2 <= n1)
∧ p3 = p2 ∗m1

∧ i3 = i2 + 1
∧ ¬(i3 ≤ n1) (translation of assume statement)
∧ p4 = g1 ? (g2 ? p3 : p2) : p1
∧ i4 = g1 ? (g2 ? i3 : i2) : i1
∧ ¬(p4 ≥ 1) (translation of assert statement)

If this is found unsatisfiable, then assertion holds.

17 / 17

