
Introduction for second half of course

Paul Jackson

School of Informatics
University of Edinburgh

Formal Verification
Spring 2017



Topics for rest of course

Focus mostly on Software FV

I Spark language and toolkit

Example of a WP (Weakest Precondition) based approach
I Overview of language, focussing on verification aspects
I Labs
I Tool architecture – use of the Why3 intermediate language
I Underlying maths and algorithms

I operational semantics
I weakest precondition calculation,
I verification condition generation

I Provers (Smt solvers, interactive theorem provers, Fol
automatic theorem provers)

I Methodology (e.g. static vs. dynamic assertion checking)
I Other tools using WP (e.g. Dafny, Frama-C, Leon)

2 / 6



Topics continued

I Sat & Smt algorithms and technology

I Cbmc – bounded model checking for C
I Other FV techniques (time permitting)

I Abstract interpretation, predicate abstraction,
interpolation, . . .

I Bigger picture
I Current take-up of FV by industry
I Research challenges

3 / 6



Spark language overview

I Subset of Ada

I Adds in features for verification
I Designed for high-integrity (safety/security/mission critical)

applications
I Syntactical features make mistakes harder
I Strong typing
I No undefined behaviours

4 / 6



Spark application examples

Pictures provided by Altran UK

5 / 6



Spark tools

I Commercially developed & supported (Altran and Adacore)

I Based on free software (gcc, Why3, CVC4)

I GPL licensed (mostly . . . )
I Include

I Gnat gcc-based compiler
I Gps IDE
I Plug-in for Eclipse IDE
I GnatProve formal verification tool

I FV support includes:
I Flow analysis
I Ensuring freedom from run-time errors
I Property checking
I Functional verification

6 / 6


