Spark verification features

Paul Jackson

School of Informatics
University of Edinburgh

Formal Verification
Spring 2018
Adding specification information to programs

- Verification concerns checking whether some model (or program) has desired properties.

- An assertion is a logical formula that is associated with a point in the control-flow of a program. It describes a property of the program state that is desired true at that point.

- Assertions usually expressed in the language of Boolean expressions provided by the programming language, sometimes extended with ∀ and ∃ quantifiers.

- FV approaches try to logically establish that assertions hold for all possible execution paths leading to them.
Assertion pragmas

if X > Y then
 Max := X;
else
 Max := Y;
end if;

pragma Assert (Max >= X and Max >= Y
 and (Max = X or Max = Y));
Freedom from runtime exceptions

Common causes of runtime exceptions include

- arithmetic overflow
- divide by zero
- array index out of bounds
- subrange/subtype constraint violation

```haskell
subtype T1 is Integer range 1 .. 10;
V : T1 := 10; -- OK
begin
V := 1 + V - 1; -- OK
V := 1 + V;     -- EXCEPTION THROWN
```

Assertions automatically inserted to check these never occur

Formal analysis simplified by not having to consider exception scenarios
Runtime errors example

Consider

\[A \ (I \ + \ J) := \frac{P}{Q}; \]

What runtime errors might occur?

Answer:

- \(I+J \) might overflow the base-type of the index ranges subtype
- \(I+J \) might be outside the index ranges subtype
- \(P/Q \) might overflow the base-type of the element type
- \(P/Q \) might be outside the element subtype
- \(Q \) might be zero
Preconditions

A precondition is an assertion attached to the start of a subprogram (a function or a procedure).

procedure Increment (X: in out Integer) with Pre => (X < Integer’Last)
is
 begin
 X := X + 1;
 end Increment;

- FV assumes subprogram preconditions hold when checking assertions within the subprogram
- FV checks preconditions hold at each subprogram invocation
Postconditions

A postcondition is an assertion attached to control-flow points of a subprogram where control flow exits the subprogram

function Total_Above_Threshold (Threshold : in Integer) return Boolean
with
 Post => Total_Above_Threshold’Result = Total > Threshold;

procedure Add_To_Total (Incr : in Integer) with
 Post => Total = Total’Old + Incr;

► When analysing a subprogram, FV checks all postconditions hold
► At each control flow point for the return of a call to a subprogram, FV assumes any subprogram postconditions hold
Combining preconditions and postconditions

```plaintext
procedure Increment (X: in out Integer)
  with Pre => (X < Integer'Last)
      Post => X = X'Old + 1;
```

```plaintext
procedure Sqrt (Input : in Integer; Res: out Integer)
  with
      Pre  => Input >= 0,
      Post => (Res * Res) <= Input and
              (Res + 1) * (Res + 1) > Input;
```
Design by contract

Preconditions and postconditions

- form a contract between subprogram users and the subprogram implementers.
- if rich enough, provide full documentation to users – insulate them from implementation details
- promote modular design
 - Extend the abstract data type (ADT) paradigm that inspired OO programming and the separation of package specifications and bodies in Ada.
- promote modular verification.

Hence enable scaling of FV.
Contract use example

procedure Add2 (X : in out Integer)
 with Pre => (X <= Integer’Last - 2)
is
begin
 Increment (X);
 Increment (X);
 Increment (X);
end Add2;

Will pre-conditions of both Increment calls be verified?

Answer: yes if Increment contract is specified with a post-condition.
Spark flow analysis

Considers two issues:

- Interaction between subprograms and global state – what global state is read from and written to.
- Dependence of outputs of subprograms on inputs
 - Inputs and outputs include both parameters and global variables

Spark notation allows desired flows to be specified

Tools then check flow specifications met

- Specification properties might related to code security
- Checks identify uninitialised variables, unused variables, ineffective code.

Assertion checking by tools relies on flow analysis to check that all variables initialised.
Global flow contract examples

procedure Set_X_To_Y_Plus_Z with
 Global => (Input => (Y, Z), -- reads values of Y and Z
 Output => X); -- modifies value of X

procedure Set_X_To_X_Plus_Y with
 Global => (Input => Y, -- reads value of Y
 In_Out => X); -- modifies value of X
 -- also reads its initial value

Sometimes known as data flow or just data dependencies in Spark documentation.
Intra-subprogram flow contract examples

procedure Swap (X, Y : in out T) with
 Depends => (X => Y, -- X depends on initial value of Y
 Y => X); -- Y depends on initial value of X

procedure Set_X_To_Y_Plus_Z with
 Depends => (X => (Y, Z)); -- X depends on Y and Z

Sometimes known as information flow or just flow dependencies in Spark documentation.
Statically checking an assertion

Involves considering all execution paths leading to it.

Branches and joins in execution paths due to conditionals are no problem.

```plaintext
if X > Y then
    Max := X;
else
    Max := Y;
end if;
pragma Assert (Max >= X and Max >= Y);
```

Loops are an issue
Execution paths involving loops

Full set of execution paths through a loop

- might not be fixed size – could be data dependent
- could be very large

subtype Natural is Integer range 0 .. Integer’Last;

procedure Increment_Loop (X : in out Integer;
 N : in Natural) with

 Pre => X <= Integer’Last - N,
 Post => X = X’Old + N

is
begin
 for I in 1 .. N loop
 X := X + 1;
 end loop;
end Increment_Loop;
Breaking loops with assertions

A Loop invariant is an assertion inserted into a loop to split execution paths into well-defined segments.

procedure Inc_Loop_Inv (X : in out Integer; N : Natural) with
 Pre => X <= Integer’Last - N,
 Post => X = X’Old + N
is
begin
 for I in 1 .. N loop
 X := X + 1;
 pragma Loop_Invariant (X = X’Loop_Entry + I);
 end loop;
end Inc_Loop_Inv;

Segments are:

- Pre ⟷ Loop_Invariant
- Loop_Invariant ⟷ Loop_Invariant
- Loop_Invariant ⟷ Post
- Pre ⟷ Post for when N = 0
Euclidean linear division

procedure Linear_Div (I : in Integer; J : in Integer;
 Q : out Integer; R : out Integer;)
with
 Pre => I >= 0 and J > 0
 Post => Q >= 0 and R >= 0 and R < J and J * Q + R = I
is
begin
 Q := 0;
 R := I;
 while R >= J loop
 pragma Loop_Invariant
 (R >= 0 and Q >= 0 and J * Q + R = I);
 Q := Q + 1;
 R := R - J;
 end loop;
end Linear_Div;
Looping through an array

subtype Index_T is Positive range 1 .. 1000;
subtype Component_T is Natural;
type Arr_T is array (Index_T) of Component_T;

procedure Validate_Arr_Zero (A : Arr_T; Success : out Boolean)
with
 Post => Success = (for all J in A’Range => A(J) = 0)
is
begin
 for J in A’Range loop
 if A(J) /= 0 then
 Success := False;
 return;
 end if;
 pragma Loop_Invariant ???;
 end loop;

 Success := True;
end Validate_Arr_Zero;
Looping through an array, with a loop invariant

subtype Index_T is Positive range 1 .. 1000;
subtype Component_T is Natural;
type Arr_T is array (Index_T) of Component_T;

procedure Validate_Arr_Zero (A : Arr_T; Success : out Boolean)
with
 Post => Success = (for all J in A’Range => A(J) = 0)
is
begin
 for J in A’Range loop
 if A(J) /= 0 then
 Success := False;
 return;
 end if;
 pragma Loop_Invariant
 (for all K in A’First .. J => A(K) = 0);
 end loop;

 Success := True;
end Validate_Arr_Zero;
Discovery & inference of loop invariants

- Reasoning with loop invariants is very much like induction on naturals

\[
P(0) \quad \forall n \in \mathbb{N}. P(n) \Rightarrow P(n + 1) \\
\forall n \in \mathbb{N}. P(n)
\]

- Checking loop invariant holds on first iteration like base case of induction
- Checking loop invariant holds on later iteration, given it holds on immediately previous one like step case of induction

- Loop invariants often discovered by generalising post-condition, just as proof by induction involves first generalising the statement to be proven.

- Automatic discovery of loop invariants is an active research field

- Some cases are easy
 - Gnatprove tool does infer bounds on for-loop indexes.
Showing loops terminate

Let Σ be the set of possible program states, $\langle W, < \rangle$ be a well-founded order.

To show a loop terminates:

1. define a function $v : \Sigma \to W$
2. show

 $$v(s') < v(s)$$

 whenever s is the state at some point in the loop and s' is the state at the same point one iteration on.

Function v is called a variant function.

In Spark

- W is most typically some bounded arithmetic type, e.g. Integer.
- $<$ is conventional order or converse
- Also can have W containing tuples of arithmetic values, lexicographically ordered
Loop termination example

```plaintext
subtype Index is Positive range 1 .. 1_000_000;
type Text is array (Index range <>) of Integer;

function LCP (A : Text; X, Y : Integer) return Natural with
    Pre  => X in A’Range and then Y in A’Range,
is
    L : Natural;
begin
    L := 0;
    while X + L <= A’Last
        and then Y + L <= A’Last
        and then A (X + L) = A (Y + L)
    loop
        pragma Loop_Variant (Increases => L);
        L := L + 1;
    end loop;
    return L;
ext LCP;
```