
GNATprove –

a Spark2014 verifying compiler
Florian Schanda, Altran UK

1

Tool architecture
User view

Source gnatprove Verdict

2

Tool architecture
More detailed view...

gnat2why gnatwhy3 SMTLIB

CVC4

Z3

AltErgo

Source Encoding

Verdict

3

GNAT Frontend
Overview

Ada 2012 and Spark2014 lexer,

parser,

semantic analyser,

expander,

code generator (with gcc via intermediate language)

4

gnat2why
Overview

Just another GNAT back-end

An elaborate semantic analysis pass over the AST:

filter Note which areas of the program are “in
Spark”

globals Generate frame conditions (global contracts if
they have not been specified) at varying levels of
details

flow Check initialization, non-aliasing, global
contracts, and information flow contracts

translation Transform Spark subprograms into WhyML
subprograms

5

gnat2why
Overview

Source

gnat2why ALI gnat2why Messages

WhyML

6

gnat2why
Translation to WhyML

Spark is still an extremely complicated language

Key properties need to be proven for a program to be correct
(“verification conditions”, or “VCs”)

Translation to a smaller, intermediate language WhyML

Simpler control flow
Simpler types

Verification condition generation based on this IL

7

gnat2why
Translation to WhyML

function Example

(A, B : Natural)

return Natural

is

R : Natural;

begin

if A < B then

R := A + 1;

else

R := B - 1;

end if;

return R;

end Example;

→

let example (a: int) (b: int)

requires { a >= 0 /\ a <= 2147483647 }

requires { b >= 0 /\ b <= 2147483647 }

returns { r -> r >= 0 /\

r <= 2147483647 }

= let r = ref 0 in

if a < b then

r := a + 1

else

r := b - 1;

(!r)

8

gnat2why
Translation to WhyML

function Example

(A, B : Natural)

return Natural

is

R : Natural;

begin

if A < B then

R := A + 1;

else

R := B - 1;

end if;

return R;

end Example;

→

let example (a: int) (b: int)

requires { a >= 0 /\ a <= 2147483647 }

requires { b >= 0 /\ b <= 2147483647 }

returns { r -> r >= 0 /\

r <= 2147483647 }

= let r = ref 0 in

if a < b then

r := a + 1

else

r := b - 1;

(!r)

8

gnat2why
Translation to WhyML

Another traversal over AST (for Spark), building another
AST (for Why3)

Tree is “pretty” printed, but not meant to be human readable

One or more Why3 modules per Spark entity

Types
Entity definitions, axioms
Subprogram definitions, axioms, bodies

All of which are dumped into a single file for gnatwhy3.

Not as nice as the previous example, a lot of extra information
embedded:

Original source locations of all VCs
Checks (x 6= 0, or x < 232, etc.)

9

gnat2why
Translation to WhyML

Yep, not very readable... VC fragment for r = a/b:

(("GP_Sloc:overflow.adb :7:7" (#" overflow.adb" 7 0 0#

overflow__example__result.int__content <- ((

#" overflow.adb" 7 0 0# "GP_Sloc:overflow.adb :7:16"

"GP_Shape:return__div" "keep_on_simp" "model_vc"

"GP_Reason:VC_OVERFLOW_CHECK" "GP_Id :1"

(Standard__integer.range_check_ ((#" overflow.adb" 7 0 0#

"GP_Reason:VC_DIVISION_CHECK" "GP_Id :0"

"GP_Sloc:overflow.adb :7:16" "GP_Shape:return__div"

"keep_on_simp" "model_vc" (Int_Division.div_

(Overflow__example__a.a) (Overflow__example__b.b))

))))); #" overflow.adb" 7 0 0# raise Return__exc));

#" overflow.adb" 3 0 0# raise Return__exc)

But we eventually get nice output...

overflow.adb:7:16: medium: divide by zero might fail (e.g. when B = 0)
overflow.adb:7:16: medium: overflow check might fail

10

gnat2why
Translation to WhyML

Yep, not very readable... VC fragment for r = a/b:

(("GP_Sloc:overflow.adb :7:7" (#" overflow.adb" 7 0 0#

overflow__example__result.int__content <- ((

#" overflow.adb" 7 0 0# "GP_Sloc:overflow.adb :7:16"

"GP_Shape:return__div" "keep_on_simp" "model_vc"

"GP_Reason:VC_OVERFLOW_CHECK" "GP_Id :1"

(Standard__integer.range_check_ ((#" overflow.adb" 7 0 0#

"GP_Reason:VC_DIVISION_CHECK" "GP_Id :0"

"GP_Sloc:overflow.adb :7:16" "GP_Shape:return__div"

"keep_on_simp" "model_vc" (Int_Division.div_

(Overflow__example__a.a) (Overflow__example__b.b))

))))); #" overflow.adb" 7 0 0# raise Return__exc));

#" overflow.adb" 3 0 0# raise Return__exc)

But we eventually get nice output...

overflow.adb:7:16: medium: divide by zero might fail (e.g. when B = 0)
overflow.adb:7:16: medium: overflow check might fail

10

gnat2why
Translation to WhyML

Features of the IL:

Based on first order logic + theories

In vague ML syntax with programming constructs:

(mutable) variables
sequences
loops, if, etc.
assertions
exceptions

Built-in types are Boolean, Int, Real, Arrays, Records, Lists,
Sets, etc. but more can be defined

11

gnat2why
Translation to WhyML

All checks come from a specification:

Some checks are user defined (user asserts, postconditions)

Ada RM defines basic checks (overflow, range, index, division
by zero, discriminants, etc.)

Spark RM defines more (LSP checks, loop variants and
invariants, etc.)

... we just follow that spec, and err on side of redundant checks.

12

SAT, SMT and SMTLIB

Recap: we now have the Spark program in a different language
(WhyML), but have not verified much...

It’s still difficult to prove anything, so we need to start talking
to (automatic) theorem provers

Language of choice is SMTLIB, but others exist

So, next step is another language transformation

13

SAT, SMT and SMTLIB
Theories

Many theories have been implemented:

Boolean

Integer

Reals

Quantifiers

Arrays

Uninterpreted functions

Bitvectors

IEEE-754 Floating Point

Strings

Sets

Algebraic Datatypes

14

SAT, SMT and SMTLIB
Overview of SMTLIB

In the beginning all SMT solvers used their own input
language

This made it hard to compare solvers

SMTLIB is both a standard language and a huge library of
benchmarks

SMTLIB only describes a search problem

No control flow (if statements, loops, etc.) - so very far away
from “programming language”

15

SAT, SMT and SMTLIB

SMTLIB is just s-expressions – I hope you remember your LISP?

; quantifier-free linear integer arithmetic
(set-logic QF_LIA)

; declarations
(declare-const x Int)

(declare-const y Int)

; hypothesis - things we know are true
(assert (<= 1 x 10)) ; 1 ≤ x ≤ 10
(assert (<= 1 y 10)) ; 1 ≤ y ≤ 10
; goal - what we want to prove
(define-const goal Bool (< (+ x y) 15)) ; x + y < 15
; search for a model where the goal is not true
(assert (not goal))

(check-sat)

CVC4 output

sat

((x 10) (y 5))

16

SAT, SMT and SMTLIB

SMTLIB is just s-expressions – I hope you remember your LISP?

; quantifier-free linear integer arithmetic
(set-logic QF_LIA)

; declarations
(declare-const x Int)

(declare-const y Int)

; hypothesis - things we know are true
(assert (<= 1 x 10)) ; 1 ≤ x ≤ 10
(assert (<= 1 y 10)) ; 1 ≤ y ≤ 10
; goal - what we want to prove
(define-const goal Bool (< (+ x y) 15)) ; x + y < 15
; search for a model where the goal is not true
(assert (not goal))

(check-sat)

CVC4 output

sat

((x 10) (y 5))

16

SAT, SMT and SMTLIB
SMTLIB language overview

Functions

(define-fun double (Int) Int)

(declare-fun triple ((x Int)) Int (+ x x x))

Assertions and function calls

(assert (forall ((x Int)) (= (double x) (+ x x))))

Predefined functions for theories

Core =, =>, and, or, xor, not, ite, ...
Ints +, -, *, /, >, >=, ...

Arrays select, store
BV bvadd, bvudiv, bvsdiv, bvlte, ...
FP fp.add, fp.mul, fp.eq, fp.isInfinite, ...

17

SAT, SMT and SMTLIB

You can encode difficult problems with this...

(declare-fun fib (Int) Int)

(assert (= (fib 0) 0))

(assert (= (fib 1) 1))

; read this as: ∀x ∈ Int • x ≥ 2 =⇒ fib(x) = fib(x − 2) + fib(x − 1)
(assert (forall ((x Int))

(=> (>= x 2)

(= (fib x) (+ (fib (- x 2))

(fib (- x 1)))))))

; let’s try to prove fib(10) < 10
(assert (not (< (fib 10) 10)))

(check-sat)

CVC4 output

unknown

(((fib 10) 55))

18

SAT, SMT and SMTLIB

You can encode difficult problems with this...

(declare-fun fib (Int) Int)

(assert (= (fib 0) 0))

(assert (= (fib 1) 1))

; read this as: ∀x ∈ Int • x ≥ 2 =⇒ fib(x) = fib(x − 2) + fib(x − 1)
(assert (forall ((x Int))

(=> (>= x 2)

(= (fib x) (+ (fib (- x 2))

(fib (- x 1)))))))

; let’s try to prove fib(10) < 10
(assert (not (< (fib 10) 10)))

(check-sat)

CVC4 output

unknown

(((fib 10) 55))

18

SAT, SMT and SMTLIB
Solvers

Many solvers exist - (partial) table from Wikipedia:

... different strengths and logic support.

19

Why3 and WP

So - Spark/WhyML and SMTLIB are quite different

Last step is to go from the intermediate language to
verification conditions expressed in SMTLIB

20

	Architecture
	Internals
	Parsing SPARK
	Translation to IL
	SMT
	VC generation

