
Formal Verification

Lecture 8: Operations on
Binary Decision Diagrams (BDDs)

Jacques Fleuriot
jdf@inf..ac.uk

Diagrams from Huth & Ryan, LiCS, 2nd Ed.

jdf@inf..ac.uk

Recap

▶ Previously:
▶ (Reduced, Ordered) Binary Decision Diagrams ((RO)BDDs)

▶ This time:
▶ Operations on ROBDDs

reduce, apply, restrict, exists
▶ Symbolic Model Checking with BDDs

Binary Decision Diagrams

Binary Decision Diagrams: DAGs, such that
▶ Unique root node
▶ Variables on non-terminal nodes
▶ Truth-values on terminal nodes
▶ Exactly two edges from each non-terminal node, labelled 0, 1

Some notation, for a given BDD node n:
▶ If n is a non-terminal node:

var(n) — the variable label on node n;
lo(n) — the node reached by following the 0 edge from n;
hi(n) — the node reached by following the 1 edge from n;

▶ If n is a terminal node:
val(n) — the truth value labelling n

For a BDD B, the root node is called root(B).

reduce

reduce constructs a ROBDD from an OBDD.

1. Label each OBDD node n with an integer id(n),
2. in a single bottom-up pass, such that:
3. two OBDD nodes m and n have the same label (id(m) = id(n))

if and only if m and n represent the same boolean function.

The ROBDD is then created by using one node from each class of
nodes with the same label.

reduce

Assignment of labels follows the rules for performing reductions.

To label a node n:
▶ Remove duplicate terminals:

if n is a terminal node (i.e., 0 or 1), then set id(n) to be val(n).
▶ Remove redundant tests:

if id(lo(n)) = id(hi(n)) then set id(n) to be id(lo(n)).
▶ Remove duplicate nodes:

if there exists a node m that has already been labelled such that
var(m) = var(n)
lo(m) = lo(n)
hi(m) = hi(n)

, set id(n) to id(m).

Use a hashtable with ⟨var(n), lo(n), hi(n)⟩ keys for O(1) lookup time.
▶ Otherwise, set id(n) to an unused number.

reduce ExampleONMLHIJKx#41

�� ��1
11
11
11
11

ONMLHIJKx#32

��

��1
11
11
11
11

ONMLHIJKx#22

�� ��1
11
11
11
11

ONMLHIJKx#23

�� ��

ONMLHIJKx#23

�� ��
0#0 1#1 0#0 1#1

In practice, labelling and construction are interleaved.

reduce ExampleONMLHIJKx#41

�� ��1
11
11
11
11

ONMLHIJKx#32

��

��1
11
11
11
11

ONMLHIJKx#22

�� ��1
11
11
11
11

ONMLHIJKx#23

�� ��

ONMLHIJKx#23

�� ��
0#0 1#1 0#0 1#1

In practice, labelling and construction are interleaved.

reduce ExampleONMLHIJKx#41

�� ��1
11
11
11
11

ONMLHIJKx#32

��

��1
11
11
11
11

ONMLHIJKx#22

�� ��1
11
11
11
11

ONMLHIJKx#23

�� ��

ONMLHIJKx#23

�� ��
0#0 1#1 0#0 1#1

In practice, labelling and construction are interleaved.

reduce ExampleONMLHIJKx#41

�� ��1
11
11
11
11

ONMLHIJKx#32

��

��1
11
11
11
11

ONMLHIJKx#22

�� ��1
11
11
11
11

ONMLHIJKx#23

�� ��

ONMLHIJKx#23

�� ��
0#0 1#1 0#0 1#1

In practice, labelling and construction are interleaved.

reduce ExampleONMLHIJKx#41

�� ��1
11
11
11
11

ONMLHIJKx#32

��

��1
11
11
11
11

ONMLHIJKx#22

�� ��1
11
11
11
11

ONMLHIJKx#23

�� ��

ONMLHIJKx#23

�� ��
0#0 1#1 0#0 1#1

In practice, labelling and construction are interleaved.

reduce ExampleONMLHIJKx#41

�� ��1
11
11
11
11

ONMLHIJKx#32

��

��1
11
11
11
11

ONMLHIJKx#22

�� ��1
11
11
11
11

ONMLHIJKx#23

�� ��

ONMLHIJKx#23

�� ��
0#0 1#1 0#0 1#1

In practice, labelling and construction are interleaved.

reduce ExampleONMLHIJKx#41

�� ��1
11
11
11
11

ONMLHIJKx#32

��

��1
11
11
11
11

ONMLHIJKx#22

�� ��1
11
11
11
11

ONMLHIJKx#23

�� ��

ONMLHIJKx#23

�� ��
0#0 1#1 0#0 1#1

In practice, labelling and construction are interleaved.

reduce ExampleONMLHIJKx#41

�� ��1
11
11
11
11

ONMLHIJKx#32

��

��1
11
11
11
11

ONMLHIJKx#22

�� ��1
11
11
11
11

ONMLHIJKx#23

�� ��

ONMLHIJKx#23

�� ��
0#0 1#1 0#0 1#1

In practice, labelling and construction are interleaved.

reduce ExampleONMLHIJKx#41

�� ��1
11
11
11
11

ONMLHIJKx#32

��

��1
11
11
11
11

ONMLHIJKx#22

�� ��1
11
11
11
11

ONMLHIJKx#23

�� ��

ONMLHIJKx#23

�� ��
0#0 1#1 0#0 1#1

In practice, labelling and construction are interleaved.

reduce ExampleONMLHIJKx#41

�� ��1
11
11
11
11

ONMLHIJKx#32

��

��1
11
11
11
11

ONMLHIJKx#22

�� ��1
11
11
11
11

ONMLHIJKx#23

�� ��

ONMLHIJKx#23

�� ��
0#0 1#1 0#0 1#1

Reduces to

ONMLHIJKx#41

��

��(
((
((
((
((
((
((
((
((
((

ONMLHIJKx#32

��

 B
BB

BB
BB

BB
BB

B

ONMLHIJKx#23

|| ��
0#0 1#1

In practice, labelling and construction are interleaved.

reduce ExampleONMLHIJKx#41

�� ��1
11
11
11
11

ONMLHIJKx#32

��

��1
11
11
11
11

ONMLHIJKx#22

�� ��1
11
11
11
11

ONMLHIJKx#23

�� ��

ONMLHIJKx#23

�� ��
0#0 1#1 0#0 1#1

Reduces to

ONMLHIJKx#41

��

��(
((
((
((
((
((
((
((
((
((

ONMLHIJKx#32

��

 B
BB

BB
BB

BB
BB

B

ONMLHIJKx#23

|| ��
0#0 1#1

In practice, labelling and construction are interleaved.

apply

Given compatible OBDDs Bf and Bg that represent formulas f and g,
apply(□,Bf,Bg) computes an OBDD representing f □ g.

▶ where □ represents some binary operation on boolean formulas
for example, ∧, ∨, ⊕

▶ Unary operations can be handled too.
for example, negation: ¬x = x⊕ 1

apply: Shannon expansions
For any boolean formula f and variable x, it can be written as:

f ≡ (¬x ∧ f [0/x]) ∨ (x ∧ f [1/x])

This is the Shannon expansion of f (originally due to G. Boole).

In particular: f □ g can be expanded like so:

f □ g ≡ (¬x ∧ (f [0/x] □ g[0/x])) ∨ (x ∧ (f [1/x] □ g[1/x]))

If a BDD ?>=<89:;x

�� ��5
55

B B′

represents a boolean function f, then:

1. B represents f [0/x] and B′ represents f [1/x]; and
2. The BDD is effectively a compressed representation of f in

Shannon normal form.
So: implement apply recursively on the structure of the BDDs.

apply: Shannon expansions
For any boolean formula f and variable x, it can be written as:

f ≡ (¬x ∧ f [0/x]) ∨ (x ∧ f [1/x])

This is the Shannon expansion of f (originally due to G. Boole).

In particular: f □ g can be expanded like so:

f □ g ≡ (¬x ∧ (f [0/x] □ g[0/x])) ∨ (x ∧ (f [1/x] □ g[1/x]))

If a BDD ?>=<89:;x

�� ��5
55

B B′

represents a boolean function f, then:

1. B represents f [0/x] and B′ represents f [1/x]; and
2. The BDD is effectively a compressed representation of f in

Shannon normal form.
So: implement apply recursively on the structure of the BDDs.

apply: Shannon expansions
For any boolean formula f and variable x, it can be written as:

f ≡ (¬x ∧ f [0/x]) ∨ (x ∧ f [1/x])

This is the Shannon expansion of f (originally due to G. Boole).

In particular: f □ g can be expanded like so:

f □ g ≡ (¬x ∧ (f [0/x] □ g[0/x])) ∨ (x ∧ (f [1/x] □ g[1/x]))

If a BDD ?>=<89:;x

�� ��5
55

B B′

represents a boolean function f, then:

1. B represents f [0/x] and B′ represents f [1/x]; and
2. The BDD is effectively a compressed representation of f in

Shannon normal form.
So: implement apply recursively on the structure of the BDDs.

apply: cases
apply(□, ?>=<89:;x

�� ��5
55

B B′

, ?>=<89:;x

�� ��6
66

C C′

) = ?>=<89:;x
xx ''NN

NNN

apply(□,B,C) apply(□,B′,C′)

apply(□, ?>=<89:;x

�� ��5
55

B B′

, C) = ?>=<89:;x
xx &&NN

NN

apply(□,B,C) apply(□,B′,C)
when C is terminal node, or non-terminal with var(root(C)) > x

apply(□, B , ?>=<89:;x

�� ��6
66

C C′

) = ?>=<89:;x
xx &&NN

NN

apply(□,B,C) apply(□,B,C′)

when B is terminal node, or non-terminal with var(root(B)) > x

apply(□, u , v) = u □ v

apply: example
Compute apply(∨,Bf,Bg), where Bf and Bg are:ONMLHIJKx#R11

��

��+
++
++
++
++
++
++
++
+

ONMLHIJKx#R22

��

$$I
II

II
II

II
II

I

ONMLHIJKx#R33

zz

��

ONMLHIJKx#R44

�� %%KK
KKK

KKK
KKK

K

0#R5 1#R6

∨ ONMLHIJKx#S11

��

��*
**
**
**
**
**
**
**
*

ONMLHIJKx#S23

zz

��

ONMLHIJKx#S34

�� %%KK
KK

KK
KK

KK
K

0#S4 1#S5

apply: recursive calls

(R1, S1)

vv %%KK
KKK

KKK
KKK

KK

(R2, S3)

~~ A
AA

AA
AA

AA
A (R3, S2)

�� ��0
00
00
00
0

(R4, S3)

�� ��0
00
00
00
0 (R3, S3)

�� ��0
00
00
00
0 (R4, S3)

�� ��0
00
00
00
0 (R6, S5)

(R5, S4) (R6, S5) (R4, S3)

~~ ��

(R6, S3)

�� A
AA

AA
AA

AA
A (R5, S4) (R6, S5)

(R5, S4) (R6, S5) (R6, S4) (R6, S5)

apply: memoisation

The recursive apply implementation will generate an OBBD.
▶ Apply reduce to convert it back to a ROBDD.

However, as can be seen from the tree of recursive calls, there are
many calls to apply with the same arguments.

▶ Each invocation of apply where at least one of the arguments
is non-terminal generates two further calls to apply: the
number of calls is worst-case exponential in the sizes of the
original diagrams.

We are not taking into account the sharing in BDDs.

We can greatly improve the run-time by using memoisation:
remembering the results of previous calls.

apply: memoised recursive calls

Memoisation results in at most |Bf| · |Bg| calls to apply.

(R1, S1)(x1)

ww ''OO
OOO

OOO
OOO

(R2, S3)(x2)

��

''OO
OOO

OOO
OOO

(R3, S2)(x3)

��

��

(R3, S3)(x3)

ww ''OO
OOO

OOO
OOO

(R4, S3)(x4)

�� ''OO
OOO

OOO
OOO

(R6, S3)(x4)

wwooo
ooo

ooo
oo

��
(R5, S4)(0) (R6, S5)(1) (R6, S4)(1)

apply: Result
If we are careful to never create the same BDD node twice (using the
same lookup table technique as reduce), then with memoisation, we
automatically get a reduced BDD:GFED@ABCx1

~~

��0
00
00
00
00
00
00
00
0

GFED@ABCx2

��

((PP
PPP

PPP
PPP

PPP
PPP

GFED@ABCx3

vv

��

GFED@ABCx4

�� ((QQ
QQQ

QQQ
QQQ

QQQ
QQQ

0 1

Other Operations

restrict(0, x,Bf) computes ROBDD for f [0/x]
1. For each node n labelled with x, incoming edges are redirected

to lo(n), and the node n is removed.
2. Resulting BDD then reduced with reduce.
3. (again, reduce can be interleaved with the removal.)

exists(x,Bf) computes ROBDD for ∃x. f.
1. Uses the identity

(∃x. f) ≡ f [0/x] ∨ f [1/x]

2. Realised using the restrict and apply functions:

apply(∨, restrict(0, x,Bf), restrict(1, x,Bf))

Time Complexities

Algorithm Input OBDDs Output OBDD Time complexity
reduce B reduced B O(|B| · log |B|)
apply Bf,Bg (reduced) Bf□g (reduced) O(|Bf| · |Bg|)
restrict Bf (reduced) Bf[0/x] or Bf[1/x] (red’d) O(|Bf| · log |Bf|)
∃ Bf (reduced) B∃x1 ... xn.f (reduced) NP-complete

H&R, Figure 6.23

Implementing CTL Model Checking using BDDs
Recall:
1. CTL model checking computes a set of states JϕK for every

sub-formula ϕ of the original formula.
2. Sets of states will be represented using ROBDDs

States are represented by boolean vectors ⟨v1, . . . , vn⟩ (i.e.
vi ∈ {0, 1}).
Sets of states are represented using ROBDDs on n variables
x1, . . . , xn (the Atoms) that describe the characteristic function of
the set (see H&R 6.3.1 for a detailed description).

▶ Set operations (∩,∪,¯) implemented using the operations on BBDs

For example, the definitionJϕ ∧ ψK = JϕK ∩ JψK
is implemented by:

BJϕ∧ψK = apply(∧,BJϕK,BJψK)

Implementing CTL Model Checking using BDDs
Transition relations (→) ⊆ S× S are represented by ROBDDs on 2n
variables.

▶ If the variables x1, . . . , xn describe the current state, and the variables
x′1, . . . , x

′
n describe the next state, then a good ordering is

x1, x′1, x2, x
′
2, . . . , xn, x

′
n (interleaving).

When translating from the model description, the boolean formulas
describing the:
1. initial state set
2. transition relation
3. defined variables

are translated into ROBDDs by using the apply algorithm,
following the structure of the original formula.

This avoids exponential blow-up from first constructing a decision
tree and then reducing.

Implementing CTL Model Checking using BDDs
The function applications

pre∃(Y)
·
= {s ∈ S | ∃s′ ∈ S. (s → s′) ∧ s′ ∈ Y}

pre∀(Y)
·
= {s ∈ S | ∀s′ ∈ S. (s → s′) → s′ ∈ Y}

are implemented using BDDs like so:

Bpre∃(Y) = exists(
−→
x′ , apply(∧,B→,BY′))

where
▶ B→ is the ROBDD representing the transition relation→;
▶ BY′ is the ROBDD representing the set Y with the variables

x1, . . . , xn renamed to x′1, . . . , x
′
n.

And:
pre∀(Y) = S− pre∃(S− Y)

where S− Y is implemented by negation (via apply).

Implementing CTL Model Checking using BDDs
To implement the temporal connectives, we compute fix points.

JEF ϕK = µY. JϕK ∪ pre∃(Y)JEG ϕK = νY. JϕK ∩ pre∃(Y)
...

By Knaster-Tarski, we know that:
▶ F |S|(∅) is the least fixed point of F: µY.F(Y)
▶ F |S|(S) is the greatest fixed point of F: νY.F(Y)

Compute JEF ϕK using the sequence (of ROBDDs)

Y0 = ∅, Y1 = JϕK ∪ pre∃(∅), Y
2 = JϕK ∪ pre∃(JϕK ∪ pre∃(∅)), ...

Usually, we won’t need |S| steps: we can stop when Yi = Yi+1

▶ This check is very cheap with ROBDDs.

Summary

▶ Operations on BDDs (H&R 6.2)
▶ reduce
▶ apply
▶ restrict, exists

▶ Symbolic Model Checking (H&R 6.3)
▶ Representing states and transitions as BDDs
▶ Implementing the CTL MC algorithm with BDDs

