
Formal Verification

Lecture 7: Introduction to
Binary Decision Diagrams (BDDs)

Jacques Fleuriot
jdf@inf.ac.uk

Diagrams from Huth & Ryan, 2nd Ed.

jdf@inf.ac.uk

Recap

▶ Previously:
▶ CTL and LTL Model Checking algorithms

▶ This time:
▶ Binary Decision Diagrams
▶ Reduced Binary Decision Diagrams
▶ Reduced Ordered Binary Decision Diagrams

Model Checking needs Very Large Sets
Given a model M = ⟨S, S0,→, L⟩ and a formula ϕ, the CTL model
checking algorithm translates CTL formulas into sets of states:

JϕK ⊆ S

For realistic models, the size of S can be enormous.

Example: The NuSMV 2.6 distribution contains an example
guidance, which is a model of part of the Shuttle’s autopilot.
According to NuSMV:
NuSMV > print_reachable_states
##
system diameter: 70
reachable states: 2.10443e+14 (2^47.5804) out of 2.63684e+27 (2^91.0909)
##

If each state is represented using 96 bits, it would need at least
approx 2.52 petabytes to explicitly store the set of all reachable
states.

Model Checking needs Very Large Sets
Given a model M = ⟨S, S0,→, L⟩ and a formula ϕ, the CTL model
checking algorithm translates CTL formulas into sets of states:

JϕK ⊆ S

For realistic models, the size of S can be enormous.

Example: The NuSMV 2.6 distribution contains an example
guidance, which is a model of part of the Shuttle’s autopilot.
According to NuSMV:
NuSMV > print_reachable_states
##
system diameter: 70
reachable states: 2.10443e+14 (2^47.5804) out of 2.63684e+27 (2^91.0909)
##

If each state is represented using 96 bits, it would need at least
approx 2.52 petabytes to explicitly store the set of all reachable
states.

Representing states as Boolean functions

Idea: represent sets of states as boolean functions.
1. Represent each state as a binary string in {0, 1}k

2. Represent a set of states as a function f : {0, 1}k → {0, 1}
f (w) = 1 if the state represented by w is in the set
f (w) = 0 if the state represented by w is not in the set

⇒ representation of sets by their characteristic functions

The set of all states could be represented as:
1. a data structure with 2.63684× 1027 nodes; or
2. the boolean function:

f (w) = 1

How to represent boolean functions?

Representing states as Boolean functions

Idea: represent sets of states as boolean functions.
1. Represent each state as a binary string in {0, 1}k

2. Represent a set of states as a function f : {0, 1}k → {0, 1}
f (w) = 1 if the state represented by w is in the set
f (w) = 0 if the state represented by w is not in the set

⇒ representation of sets by their characteristic functions

The set of all states could be represented as:
1. a data structure with 2.63684× 1027 nodes; or
2. the boolean function:

f (w) = 1

How to represent boolean functions?

Representations of Boolean Functions

From H&R, Figure 6.1

test for Operations
Representation compact? satisf’y validity ∧ ∨ ¬
Prop. Formulas often hard hard easy easy easy
Formulas in DNF sometimes easy hard hard easy hard
Formulas in CNF sometimes hard easy easy hard hard
Truth Tables never hard hard hard hard hard
Reduced OBDDs often easy easy medium medium easy

Space complexity of representations and time complexities of operations on those
representations.

Note: With a truth table representation, while operations are conceptually easy,
especially when table rows are always listed in some standard order, the time
complexities are hard, as table sizes and hence operation time complexities are
always exponential in the number of input variables.

Binary decision trees
Tree for the boolean function f (x, y) ·

= ¬x ∧ ¬y?>=<89:;x

�� ��;
;;

;;
;;

;

?>=<89:;y

�� ��.
..
..
.

?>=<89:;y

�� ��.
..
..
.

1 0 0 0

Note on notation:
▶ 0, 1 for ⊥ (False), ⊤ (True)
▶ Often also have: +, ·,¯ for ∨,∧,¬

To compute value:
1. Start at root
2. Take dashed line if value of var at current node is 0
3. Take solid line if value of var at current node is 1
4. Function value is value at terminal node reached

Binary decision diagram
Similar to Binary Decision Trees, except that nodes can have
multiple in-edges.

A binary decision diagram (BDD) is a finite DAG (Directed Acyclic
Graph) with:

▶ a unique initial node;
▶ all non-terminals labelled with a boolean variable;
▶ all terminals labelled with 0 or 1;
▶ all edges are labelled 0 (dashed) or 1 (solid);
▶ each non-terminal has exactly: one out-edge labelled 0, and one

out-edge labelled 1.

We will use BDDs with two extra properties:
1. Reduced – eliminate redundancy
2. Ordered – canonical ordering of the boolean variables

Reducing BDDs I?>=<89:;x

�� ��<
<<

<<
<<

<

?>=<89:;y

�� ��.
..
..
.

?>=<89:;y

�� ��.
..
..
.

1 0 0 0

remove
duplicate
terminals
−→

?>=<89:;x

�� ��<
<<

<<
<<

<

?>=<89:;y

�� ##G
GG

GG
GG

GG
G

?>=<89:;y

�� }}
1 0

remove
redundant
test −→

?>=<89:;x

��

��&
&&
&&
&&
&&
&&
&&
&

?>=<89:;y

�� ##G
GG

GG
GG

GG
G

1 0

Reducing BDDs II

Removing duplicate non-terminals:?>=<89:;z

~~ @
@@

@@
@@

@@?>=<89:;x

�� ��/
//
//
/

?>=<89:;x

�� ��/
//
//
/

?>=<89:;y

��))SSS
SSSS

SSSS
SSSS

SSSS
S ?>=<89:;y

�� %%KK
KKK

KKK
KKK

K ?>=<89:;y

yy ��0
00
00
0

?>=<89:;y

��uukkkk
kkkk

kkkk
kkkk

kkkk

0 1

−→ ?>=<89:;z

~~ ��8
88

88
88?>=<89:;x

�� ��

?>=<89:;x

|| ��/
//
//
/

?>=<89:;y

�� ##G
GG

GG
GG

GG
G ?>=<89:;y

��vvlll
lll

lll
lll

lll
lll

0 1

Reducing BDDs III

Removing redundant test:?>=<89:;z

~~ ��8
88

88
88?>=<89:;x

�� ��

?>=<89:;x

|| ��/
//
//
/

?>=<89:;y

�� ##G
GG

GG
GG

GG
G ?>=<89:;y

��vvlll
lll

lll
lll

lll
lll

0 1

−→ ?>=<89:;z

��

��8
88

88
88 ?>=<89:;x

|| ��/
//
//
/

?>=<89:;y

�� ##G
GG

GG
GG

GG
G ?>=<89:;y

��vvmmm
mmm

mmm
mmm

mmm
mm

0 1

Reduction Operations

1. Removal of duplicate terminals. If a BDD contains more than
one terminal 0-node, then redirect all edges which point to such
a 0-node to just one of them. Do the same with terminal nodes
labelled 1.

2. Removal of redundant tests. If both outgoing edges of a node n
point to the same node m, then remove node n, sending all its
incoming edges to m.

3. Removal of duplicate non-terminals. If two distinct nodes n and
m in the BDD are the roots of structurally identical subBDDs,
then eliminate one of them and redirect all its incoming edges
to the other one.

All of these operations preserve the BDD-ness of the DAG.

A BDD is reduced if it has been simplified as much as possible using
these reduction operations.

Generality of BDDs

?>=<89:;x

�� ��0
00
00
00?>=<89:;y

��

&&

?>=<89:;z

�� ��/
//
//
//?>=<89:;x

�� %%LL
LLL

LLL
LLL

LL
?>=<89:;y

�� ��1
11
11
1

?>=<89:;x

yy ����
��
��

0 1

?>=<89:;z

�� ��0
00
00
00?>=<89:;y

��

��0
00
00
00
00
00
00
00
0

?>=<89:;x

��

��/
//
//
//?>=<89:;x

�� %%LL
LLL

LLL
LLL

LL
?>=<89:;y

yy ��

0 1

A variable might occur more
than once on a path Ordering of variables on paths is not fixed

Ordered BDDs
▶ Let [x1, ..., xn] be an ordered list of variables without duplicates;
▶ A BDD B has an ordering [x1, ..., xn] if

1. all variables of B occur in [x1, ..., xn]; and
2. if xj follows xi on a path in B then j > i

▶ An ordered BDD (OBDD) is a BDD which has an ordering for
some list of variables.

▶ The orderings of two OBBDs B and B′ are compatible if there
are no variables x, y such that

▶ x is before y in the ordering for B, and
▶ y is before x in the ordering for B′.

Theorem
For a given ordering, the reduced OBDD (ROBDD) representing a given
function f is unique.

If B1 and B2 are two ROBDDs with compatible variable orderings
representing the same boolean function, then they have identical
structure.

Impact of variable ordering on size (I)

Consider the boolean function
f (x1, ..., x2n) = (x1 ∨ x2) ∧ (x3 ∨ x4) ∧ ... ∧ (x2n−1 ∨ x2n)

With variable ordering [x1, x2, x3, ..., x2n] ROBDD has 2n+ 2 nodes

For n = 3: ?>=<89:;x1
}}

��

?>=<89:;x2

��

!!C
CCC ?>=<89:;x3

}}

��

?>=<89:;x4

��

!!C
CCC ?>=<89:;x5

}}

��

?>=<89:;x6

 ##FF

FF

0 1

Impact of variable ordering on size (II)
With [x1, x3, ..., x2n−1, x2, x4..., x2n] ROBDD has 2n+1 nodes
For n = 3: ?>=<89:;x1

tt))SSS
SSS

SSS
SS?>=<89:;x3

xx &&LL
LLL

LL
?>=<89:;x3

x x !!D
DD

DD?>=<89:;x5

�� ��:
::

:
?>=<89:;x5

�� ��:
::

:
?>=<89:;x5

�� ��-
--
--
--
--

?>=<89:;x5

��

��
��
��
��
��
��
��
��
��
�?>=<89:;x2

��

..

?>=<89:;x2

66

?>=<89:;x2

��

))

?>=<89:;x2

zz ��

?>=<89:;x4

uu

��:
::

:
?>=<89:;x4

��

��-
--
--
--
-?>=<89:;x6

qq ''NN
NNN

NNN

0 1

There are various heuristics that can help with choosing orderings.

However, improving a given ordering is NP-complete.

Impact of variable ordering on size III

Common ALU (Arithmetic Logic Unit) operations such as shifts, addition,
subtraction, bitwise “and”, “or”, “exclusive or”, and parity (whether a word
has an odd or even number of 1s) are all expressible using ROBDDs with
total number of nodes linear in word size.

E.g., for even number of 1s for n = 4: ?>=<89:;x1

�� ��<
<<

<?>=<89:;x2

�� &&MM
MMM

MM
?>=<89:;x2

��xxqqq
qqq

q?>=<89:;x3

�� &&MM
MMM

MM
?>=<89:;x3

��xxqqq
qqq

q?>=<89:;x4

�� ''OO
OOO

OOO
?>=<89:;x4

��wwooo
ooo

oo

1 0

No efficient ROBDD representation for multiply operation (they are all
exponential size in the number of boolean variables).

Importance of canonical representation

Having a canonical, i.e. unique, computable representation enables
easy tests for

▶ Absence of redundant variables. A boolean function f does not
depend on an input variable x if no nodes occur for x in the
ROBDD for f.

▶ Semantic equivalence. Check f ≡ g by checking whether or not
the ROBDDs for f and g have identical structure.

▶ Validity. Check if the BDD is identical to the one with just the
terminal node 1 and nothing else.

▶ Satisfiability. Check if the BDD is not identical to the one with
just the terminal node 0 and nothing else.

▶ Implication. Check if ∀−→x . f
(−→x) → g

(−→x) by checking
whether or not the ROBDD for f ∧ ¬g is constant 0.

Memoisation
The representation of multiple ROBDDs can share memory.

Represent multiple BDDs using a large array of records:
v0 l0 h0
v1 l1 h1
v2 l2 h2
v3 l3 h3
v4 l4 h4
...

vn−1 ln−1 hn−1

▶ each entry represents a BDD node
▶ vi is the variable label;
▶ li is the index of the node pointed to for the

false edge;
▶ hi is the index of the node pointed to for

the true edge;
▶ Use fake −1 and −2 indexes to represent

0 and 1 .
▶ Each ROBDD is represented by the index

of its root.

Use a lookup table to ensure each entry is unique. So identical ROBBDs
(and hence semantically equal functions) will have exactly the same index.

Summary

▶ BDDs (H&R 6.1)
▶ Why BDDs?
▶ Binary Decision Diagrams
▶ Reduced Binary Decision Diagrams
▶ Reduced Ordered Binary Decision Diagrams

▶ Next time:
▶ Algorithms for implementing logical operations on BDDs
▶ More details on implementing CTL MC with BDDs

