
Formal Verification

Lecture 6: How LTL Model Checking Works
(Potted Version)

Jacques Fleuriot
jdf@inf.ac.uk

jdf@inf.ac.uk

Recap

▶ Previously:
▶ Model Checking CTL formulas

▶ This time:
▶ Model Checking LTL
▶ Language-theoretic viewpoint
▶ From LTL formulas to automata (examples)

LTL Semantics recap

Definition (Transition System, with S0 explicit)
A transition system M = ⟨S, S0,→, L⟩ consists of:

S a finite set of states
S0 ⊆ S a set of initial states

→ ⊆ S× S transition relation
L : S → P(Atom) a labelling function

such that ∀s1 ∈ S. ∃s2 ∈ S. s1 → s2

Definition (Path)
A path π in a transition system M = ⟨S, S0,→, L⟩ is an infinite
sequence of states s0, s1, ... such that s0 ∈ S0 and ∀i ≥ 0. si → si+1.
Paths are written as: π = s0 → s1 → s2 → ...

The LTL Model Checking Problem

LTL model checking seeks to answer the question (with starting
state s omited):

Does M |= ϕ hold?

or, equivalently:

Does ∀π ∈ Paths(M). π |=0 ϕ hold?

where (recall) π |=i ϕ means “path at position i satisfies formula ϕ”.

▶ The universal quantification is over the infinite set of paths
and each path is infinitely long

▶ How can we check infinitely many paths?
▶ CTL: use a fixed point characterisation of the sets of states
▶ LTL: sets of paths; a path is a sequences of symbols …

… so use a language-theoretic approach.

The language accepted by a transition system
Fix a transition system M = ⟨S, S0,→, L⟩

Let us consider the set of states S as an alphabet Σ.

Each infinite path π is then a word in the set Σω .

The set of all paths of M is the language L(M) accepted byM.

Example:

M L(M)
// a

wwb

77

// c
zz

{abcccc...,
ababcccccc...,
abababcccccc...,
ababababcccccc...,
...,
ababababababab....}

The language accepted by a transition system
Fix a transition system M = ⟨S, S0,→, L⟩

Let us consider the set of states S as an alphabet Σ.

Each infinite path π is then a word in the set Σω .

The set of all paths of M is the language L(M) accepted byM.

Example:

M L(M)
// a

wwb

77

// c
zz

{abcccc...,
ababcccccc...,
abababcccccc...,
ababababcccccc...,
...,
ababababababab....}

Language of an LTL formula

Let ϕ be an LTL formula, and S be the set of states of a model with
the same set of atomic propositions as ϕ.

Define the language L(ϕ) of ϕ as:

L(ϕ) = {π ∈ Sω | π |=0 ϕ}

Alternate definitions of the language of a transition system and of a
formula use P(Atom) as the alphabet instead of the set of states S (see
H&R).

If the state has a boolean component for each element of Atom, then the
definitions are equivalent.

Language of an LTL formula

Let ϕ be an LTL formula, and S be the set of states of a model with
the same set of atomic propositions as ϕ.

Define the language L(ϕ) of ϕ as:

L(ϕ) = {π ∈ Sω | π |=0 ϕ}

Alternate definitions of the language of a transition system and of a
formula use P(Atom) as the alphabet instead of the set of states S (see
H&R).

If the state has a boolean component for each element of Atom, then the
definitions are equivalent.

Language-theoretic presentation of validity

Recall: LTL model checking seeks to answer the question:

Does M |= ϕ hold?

or, equivalently:

Does ∀π ∈ Paths(M). π |=0 ϕ hold?

Using the presentation of transitions systems and formulas as
languages, this can now be phrased as:

L(M) ⊆ L(ϕ)

or, equivalently:
L(M) ∩ L(ϕ) = ∅

where X means Sω − X.

Languages via automata

L(M) is defined in terms of a finite state transition system. Can
LTL formulas be described in the same way?

No. In general, L(ϕ) cannot be represented by a transition system.

Can be represented by a related concept called a Büchi Automaton.

A (non-deterministic) Büchi automaton ⟨S,Σ,→, S0,A⟩ consists of:

S a finite set of states
Σ an alphabet

→ ⊆ S× Σ× S transition relation
S0 ⊆ S set of initial states
A ⊆ S set of accepting states

An infinite word is accepted by a Büchi automaton iff there is a run
of the automaton on which some accepting state is visited infinitely
often.

Languages via automata

L(M) is defined in terms of a finite state transition system. Can
LTL formulas be described in the same way?

No. In general, L(ϕ) cannot be represented by a transition system.

Can be represented by a related concept called a Büchi Automaton.

A (non-deterministic) Büchi automaton ⟨S,Σ,→, S0,A⟩ consists of:

S a finite set of states
Σ an alphabet

→ ⊆ S× Σ× S transition relation
S0 ⊆ S set of initial states
A ⊆ S set of accepting states

An infinite word is accepted by a Büchi automaton iff there is a run
of the automaton on which some accepting state is visited infinitely
often.

Languages via automata

L(M) is defined in terms of a finite state transition system. Can
LTL formulas be described in the same way?

No. In general, L(ϕ) cannot be represented by a transition system.

Can be represented by a related concept called a Büchi Automaton.

A (non-deterministic) Büchi automaton ⟨S,Σ,→, S0,A⟩ consists of:

S a finite set of states
Σ an alphabet

→ ⊆ S× Σ× S transition relation
S0 ⊆ S set of initial states
A ⊆ S set of accepting states

An infinite word is accepted by a Büchi automaton iff there is a run
of the automaton on which some accepting state is visited infinitely
often.

Example Büchi automata
Here, ¬a means “any symbol that isn’t a”. States marked with ���������������� are accepting.

F a:
//�������� a //�� ���������������� bb

G a:

//����������������a �� ¬a //�������� bb
a U b:

//��������a �� b //

¬a %%KK
KKK

K ���������������� bb�������� bb
(Can also do them without the error paths.)
For the general construction for any formula ϕ, see H&R, Section 3.6.3.

LTL Model Checking Idea
We reformulated the LTL model checking problem to:

L(M) ∩ L(ϕ) = ∅

Now:
1. Observe that L(ϕ) = L(¬ϕ)
2. Let Aϕ be a Büchi automaton such that L(ϕ) = L(Aϕ).
3. For a suitable notion of composition M⊗ A of a transition

system M and a Büchi automaton A, we have that

L(M⊗ A) = L(M) ∩ L(A)

4. So, to check M |= ϕ, instead check

L(M⊗ A¬ϕ) = ∅

5. Use Fair CTL model checking to check this last property. See
H&R.

Example: Model Checking LTL formula G p

1. Construct an automaton A¬G p = AF ¬p for F ¬p, which takes
as input infinite paths of states of a model M and accepts just
those paths that satisfy F ¬p.

2. Compose AF ¬p and M and ask whether the language of the
composition is empty.

3. If the language is empty, then we know that G p is satisfied by
M. If not and we exhibit an accepting path, then that path is a
counter-example to G p: it both is a path in M and it satisfies
AF ¬p = A¬G p.

The next few slides examine this within the context of NuSMV.

Emulating Büchi automata in NuSMV
Here is a transition system and LTL formula emulating a Büchi
automaton AF ¬p for checking F ¬p:
-- A 2 state automaton for F ! p.
MODULE formula(sys)

VAR
st : { 0, 1 };

ASSIGN
init(st) := 0;
next(st) := case

-- loop in state 0 if p is always true
st = 0 & sys.p : 0;
-- If ever p is false, transition to state 1
st = 0 & !sys.p : 1;
-- then loop forever more in state 1
st = 1 : 1;

esac;

-- Accepting states: {1} as st = 1 occurs infinitely often

-- LTL expression of acceptance condition:
-- Specification is true just when there are no accepting paths

LTLSPEC ! G F st = 1;

Composing Büchi automaton and transition system
This composition checks LTL property G p of the model:

-- A model M with 2 alternative definitions of a state property p
MODULE model

VAR
st : 0..2;

ASSIGN
init(st) := 0;
next(st) := case

st = 0 : {1,2};
st = 1 : 1;
st = 2 : 2;

esac;
DEFINE

p := st = 0 | st = 1;
-- p := TRUE

MODULE main
VAR

m : model;
f : formula(m);

Model Checking Results 1
With this definition in the model:

p := st = 0 | st = 1;
we get:
-- specification !(G (F st = 1)) IN f is false
-- as demonstrated by the following execution sequence
Trace Type: Counterexample
-> State: 1.1 <-

m.st = 0
f.st = 0
m.p = TRUE

-> State: 1.2 <-
m.st = 2
m.p = FALSE

-- Loop starts here
-> State: 1.3 <-

f.st = 1
-- Loop starts here
-> State: 1.4 <-
-> State: 1.5 <-

The acceptance condition for a run in this composition is just the
acceptance condition for a run of the formula automaton.

Model Checking Results 2

With this definition in the model:

p := TRUE;

we get:

-- specification !(G (F st = 1)) IN f is true

Summary

▶ LTL Model Checking (H&R 3.6.2, 3.6.3)
▶ Transition systems and formulas as languages
▶ Formulas as Büchi automata
▶ Simulating Büchi automata in NuSMV

▶ Next time: Binary Decision Diagrams
[BDDs are] one of the only really fundamental data
structures that came out in the last twenty-five years.

— Donald Knuth “Fun with Binary Decision
Diagrams”

