Formal Verification

Lecture 6: How LTL Model Checking Works

(Potted Version)

Jacques Fleuriot jdf@inf.ac.uk

Recap

- Previously:
 - Model Checking CTL formulas
- This time:
 - Model Checking LTL
 - Language-theoretic viewpoint
 - ▶ From LTL formulas to automata (examples)

LTL Semantics recap

Definition (Transition System, with S_0 **explicit)** A *transition system* $\mathcal{M} = \langle S, S_0, \rightarrow, L \rangle$ consists of:

S	a finite set of states
$S_0 \subseteq S$	a set of initial states
$\rightarrow \subseteq S \times S$	transition relation
$S \to \mathcal{P}(Atom)$	a labelling function

such that $\forall s_1 \in S$. $\exists s_2 \in S$. $s_1 \rightarrow s_2$

L

Definition (Path)

A *path* π in a transition system $\mathcal{M} = \langle S, S_0, \rightarrow, L \rangle$ is an infinite sequence of states $s_0, s_1, ...$ such that $s_0 \in S_0$ and $\forall i \ge 0$. $s_i \rightarrow s_{i+1}$. Paths are written as: $\pi = s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow ...$

The LTL Model Checking Problem

LTL model checking seeks to answer the question (with starting state *s* omited):

Does $\mathcal{M} \models \phi$ hold?

or, equivalently:

Does
$$\forall \pi \in \operatorname{Paths}(\mathcal{M}). \pi \models^{0} \phi$$
 hold?

where (recall) $\pi \models^i \phi$ means "path at position *i* satisfies formula ϕ ".

- The universal quantification is over the *infinite* set of paths and each path is infinitely long
- How can we check infinitely many paths?
- ► CTL: use a fixed point characterisation of the sets of *states*
- LTL: sets of *paths*; a path is a sequences of symbols ...
 ... so use a *language-theoretic* approach.

The language accepted by a transition system

Fix a transition system $\mathcal{M} = \langle S, S_0, \rightarrow, L \rangle$

Let us consider the set of states *S* as an *alphabet* Σ .

Each infinite path π is then a word in the set Σ^{ω} .

The set of all paths of \mathcal{M} is the language $\mathcal{L}(\mathcal{M})$ accepted by \mathcal{M} .

The language accepted by a transition system

Fix a transition system $\mathcal{M} = \langle S, S_0, \rightarrow, L \rangle$

Let us consider the set of states *S* as an *alphabet* Σ .

Each infinite path π is then a word in the set Σ^{ω} .

The set of all paths of \mathcal{M} is the language $\mathcal{L}(\mathcal{M})$ accepted by \mathcal{M} .

Example:

\mathcal{M}	$\mathcal{L}(\mathcal{M})$
$b \xrightarrow{a} c$	{abcccc, ababcccccc, abababccccccc, ababababccccccc,
	, ababababababab}

Language of an LTL formula

Let ϕ be an LTL formula, and *S* be the set of states of a model with the same set of atomic propositions as ϕ .

Define the language $\mathcal{L}(\phi)$ of ϕ as:

$$\mathcal{L}(\phi) = \{ \pi \in S^{\omega} \mid \pi \models^{0} \phi \}$$

Language of an LTL formula

Let ϕ be an LTL formula, and *S* be the set of states of a model with the same set of atomic propositions as ϕ .

Define the language $\mathcal{L}(\phi)$ of ϕ as:

$$\mathcal{L}(\phi) = \{ \pi \in S^{\omega} \mid \pi \models^{0} \phi \}$$

Alternate definitions of the language of a transition system and of a formula use $\mathcal{P}(Atom)$ as the alphabet instead of the set of states *S* (see H&R).

If the state has a boolean component for each element of *Atom*, then the definitions are equivalent.

Language-theoretic presentation of validity

Recall: LTL model checking seeks to answer the question:

Does $\mathcal{M} \models \phi$ hold?

or, equivalently:

Does
$$\forall \pi \in \text{Paths}(\mathcal{M}). \pi \models^{0} \phi$$
 hold?

Using the presentation of transitions systems and formulas as **languages**, this can now be phrased as:

$$\mathcal{L}(\mathcal{M}) \subseteq \mathcal{L}(\phi)$$

or, equivalently:

$$\mathcal{L}(\mathcal{M}) \cap \overline{\mathcal{L}(\phi)} = \emptyset$$

where \overline{X} means $S^{\omega} - X$.

Languages via automata

 $\mathcal{L}(\mathcal{M})$ is defined in terms of a finite state transition system. Can LTL formulas be described in the same way?

Languages via automata

 $\mathcal{L}(\mathcal{M})$ is defined in terms of a finite state transition system. Can LTL formulas be described in the same way?

No. In general, $\mathcal{L}(\phi)$ cannot be represented by a transition system. Can be represented by a related concept called a *Büchi Automaton*.

Languages via automata

 $\mathcal{L}(\mathcal{M})$ is defined in terms of a finite state transition system. Can LTL formulas be described in the same way?

No. In general, $\mathcal{L}(\phi)$ cannot be represented by a transition system. Can be represented by a related concept called a *Büchi Automaton*.

A (non-deterministic) Büchi automaton $\langle S, \Sigma, \rightarrow, S_0, A \rangle$ consists of:

 $\begin{array}{ll} S & \text{a finite set of states} \\ \Sigma & \text{an alphabet} \\ \rightarrow \subseteq S \times \Sigma \times S & \text{transition relation} \\ S_0 \subseteq S & \text{set of initial states} \\ A \subseteq S & \text{set of accepting states} \end{array}$

An infinite word is **accepted** by a Büchi automaton iff there is a run of the automaton on which some **accepting state is visited infinitely often**.

Example Büchi automata

Here, $\neg a$ means "any symbol that isn't *a*". States marked with \odot are accepting.

(Can also do them without the error paths.) For the general construction for any formula ϕ , see H&R, Section 3.6.3.

LTL Model Checking Idea

We reformulated the LTL model checking problem to:

$$\mathcal{L}(\mathcal{M}) \cap \overline{\mathcal{L}(\phi)} = \emptyset$$

Now:

- **1**. Observe that $\overline{\mathcal{L}(\phi)} = \mathcal{L}(\neg \phi)$
- **2**. Let A_{ϕ} be a Büchi automaton such that $\mathcal{L}(\phi) = \mathcal{L}(A_{\phi})$.
- **3**. For a suitable notion of *composition M* ⊗ *A* of a transition system *M* and a Büchi automaton *A*, we have that

$$\mathcal{L}(\mathcal{M}\otimes A) = \mathcal{L}(\mathcal{M}) \cap \mathcal{L}(A)$$

4. So, to check $\mathcal{M} \models \phi$, instead check

$$\mathcal{L}(\mathcal{M}\otimes A_{\neg\phi})=\emptyset$$

5. Use *Fair CTL model checking* to check this last property. See H&R.

Example: Model Checking LTL formula G p

- Construct an automaton A_{¬G p} = A_{F ¬p} for F ¬p, which takes as input infinite paths of states of a model M and accepts just those paths that satisfy F ¬p.
- 2. Compose $A_{\mathbf{F} \neg p}$ and \mathcal{M} and ask whether the language of the composition is empty.
- If the language is empty, then we know that G p is satisfied by M. If not and we exhibit an accepting path, then that path is a counter-example to G p: it both is a path in M and it satisfies A_{F ¬p} = A_{¬G p}.

The next few slides examine this within the context of NuSMV.

Emulating Büchi automata in NuSMV

```
Here is a transition system and LTL formula emulating a Büchi automaton A_{\mathbf{F} \neg p} for checking \mathbf{F} \neg p:
```

```
-- A 2 state automaton for F ! p.
MODULE formula(sys)
 VAR.
   st : { 0, 1 };
 ASSIGN
   init(st) := 0;
   next(st) := case
         -- loop in state 0 if p is always true
       st = 0 & sys.p : 0;
       -- If ever p is false, transition to state 1
       st = 0 & !sys.p : 1;
       -- then loop forever more in state 1
       st = 1 : 1:
      esac;
    -- Accepting states: {1} as st = 1 occurs infinitely often
```

```
-- LTL expression of acceptance condition:
-- Specification is true just when there are no accepting paths
```

```
LTLSPEC ! G F st = 1;
```

Composing Büchi automaton and transition system

This composition checks LTL property **G** *p* of the model:

```
-- A model M with 2 alternative definitions of a state property p
MODULE model
  VAR.
    st : 0..2;
  ASSIGN
    init(st) := 0;
    next(st) := case
        st = 0 : \{1, 2\};
        st = 1 : 1;
        st = 2 : 2;
      esac;
  DEFINE
    p := st = 0 | st = 1;
    -- p := TRUE
MODULE main
  VAR.
    m : model;
    f : formula(m);
```

Model Checking Results 1

With this definition in the model:

p := st = 0 | st = 1;

we get:

```
-- specification !( G ( F st = 1)) IN f is false
-- as demonstrated by the following execution sequence
Trace Type: Counterexample
-> State: 1.1 <-
 m.st = 0
 f.st = 0
 m.p = TRUE
-> State: 1.2 <-
 m.st = 2
 m.p = FALSE
-- Loop starts here
-> State: 1.3 <-
 f.st = 1
-- Loop starts here
-> State: 1.4 <-
-> State: 1.5 <-
```

The acceptance condition for a run in this composition is just the acceptance condition for a run of the formula automaton.

Model Checking Results 2

With this definition in the model:

p := TRUE;

we get:

-- specification !(G (F st = 1)) IN f is true

Summary

► LTL Model Checking (H&R 3.6.2, 3.6.3)

- Transition systems and formulas as languages
- Formulas as Büchi automata
- Simulating Büchi automata in NuSMV
- Next time: Binary Decision Diagrams

[BDDs are] one of the only really fundamental data structures that came out in the last twenty-five years. — Donald Knuth "Fun with Binary Decision Diagrams"