Formal Verification

Lecture 6: How LTL Model Checking Works
(Potted Version)

Jacques Fleuriot
jdf@inf.ac.uk
Recap

- Previously:
 - Model Checking CTL formulas

- This time:
 - Model Checking LTL
 - Language-theoretic viewpoint
 - From LTL formulas to automata (examples)
LTL Semantics recap

Definition (Transition System, with S_0 explicit)

A transition system $\mathcal{M} = \langle S, S_0, \rightarrow, L \rangle$ consists of:

- S a finite set of states
- $S_0 \subseteq S$ a set of initial states
- $\rightarrow \subseteq S \times S$ transition relation
- $L : S \rightarrow \mathcal{P}(\text{Atom})$ a labelling function

such that $\forall s_1 \in S. \exists s_2 \in S. s_1 \rightarrow s_2$

Definition (Path)

A path π in a transition system $\mathcal{M} = \langle S, S_0, \rightarrow, L \rangle$ is an infinite sequence of states s_0, s_1, \ldots such that $s_0 \in S_0$ and $\forall i \geq 0. s_i \rightarrow s_{i+1}$. Paths are written as: $\pi = s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow \ldots$
The LTL Model Checking Problem

LTL model checking seeks to answer the question (with starting state omitted):

$$\text{Does } M \models \phi \text{ hold?}$$

or, equivalently:

$$\text{Does } \forall \pi \in \text{Paths}(M). \pi \models^0 \phi \text{ hold?}$$

where (recall) $\pi \models^i \phi$ means “path at position i satisfies formula ϕ”.

- The universal quantification is over the *infinite* set of paths and each path is infinitely long
- How can we check infinitely many paths?
- CTL: use a fixed point characterisation of the sets of states
- LTL: sets of *paths*; a path is a sequence of symbols so use a *language-theoretic* approach.
The language accepted by a transition system

Fix a transition system \(\mathcal{M} = \langle S, S_0, \rightarrow, L \rangle \)

Let us consider the set of states \(S \) as an alphabet \(\Sigma \).

Each infinite path \(\pi \) is then a word in the set \(\Sigma^\omega \).

The set of all paths of \(\mathcal{M} \) is the language \(L(\mathcal{M}) \) accepted by \(\mathcal{M} \).
The language accepted by a transition system

Fix a transition system $\mathcal{M} = \langle S, S_0, \rightarrow, L \rangle$

Let us consider the set of states S as an *alphabet* Σ.

Each infinite path π is then a word in the set Σ^ω.

The set of all paths of \mathcal{M} is the language $\mathcal{L}(\mathcal{M})$ accepted by \mathcal{M}.

Example:

<table>
<thead>
<tr>
<th>\mathcal{M}</th>
<th>$\mathcal{L}(\mathcal{M})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\xrightarrow{a}) (b \xrightarrow{c})</td>
<td>{(abc\ldots), (ababc\ldots), (ababab\ldots), \ldots, (ababababababab\ldots)}</td>
</tr>
</tbody>
</table>
Language of an LTL formula

Let ϕ be an LTL formula, and S be the set of states of a model with the same set of atomic propositions as ϕ.

Define the language $\mathcal{L}(\phi)$ of ϕ as:

$$\mathcal{L}(\phi) = \{ \pi \in S^\omega \mid \pi \models^0 \phi \}$$
Let ϕ be an LTL formula, and S be the set of states of a model with the same set of atomic propositions as ϕ.

Define the language $\mathcal{L}(\phi)$ of ϕ as:

$$\mathcal{L}(\phi) = \{ \pi \in S^\omega \mid \pi \models^0 \phi \}$$

Alternate definitions of the language of a transition system and of a formula use $\mathcal{P}(\text{Atom})$ as the alphabet instead of the set of states S (see H&R).

If the state has a boolean component for each element of Atom, then the definitions are equivalent.
Language-theoretic presentation of validity

Recall: LTL model checking seeks to answer the question:

Does $\mathcal{M} \models \phi$ hold?

or, equivalently:

Does $\forall \pi \in \text{Paths}(\mathcal{M}). \pi \models^0 \phi$ hold?

Using the presentation of transitions systems and formulas as languages, this can now be phrased as:

$L(\mathcal{M}) \subseteq L(\phi)$

or, equivalently:

$L(\mathcal{M}) \cap \overline{L(\phi)} = \emptyset$

where \overline{X} means $S^\omega - X$.
Languages via automata

$\mathcal{L}(\mathcal{M})$ is defined in terms of a finite state transition system. Can LTL formulas be described in the same way?
Languages via automata

$\mathcal{L}(M)$ is defined in terms of a finite state transition system. Can LTL formulas be described in the same way?

No. In general, $\mathcal{L}(\phi)$ cannot be represented by a transition system. Can be represented by a related concept called a Büchi Automaton.
Languages via automata

$\mathcal{L}(M)$ is defined in terms of a finite state transition system. Can LTL formulas be described in the same way?

No. In general, $\mathcal{L}(\phi)$ cannot be represented by a transition system. Can be represented by a related concept called a Büchi Automaton.

A (non-deterministic) Büchi automaton $\langle S, \Sigma, \rightarrow, S_0, A \rangle$ consists of:

- S a finite set of states
- Σ an alphabet
- $\rightarrow \subseteq S \times \Sigma \times S$ transition relation
- $S_0 \subseteq S$ set of initial states
- $A \subseteq S$ set of accepting states

An infinite word is accepted by a Büchi automaton iff there is a run of the automaton on which some accepting state is visited infinitely often.
Example Büchi automata

Here, \(\neg a \) means “any symbol that isn’t \(a \)”. States marked with \(\ominus \) are accepting.

F \(a \):

\[
\begin{array}{c}
\text{a} \\
\ominus \\
\text{a} \\
\ominus
\end{array}
\]

G \(a \):

\[
\begin{array}{c}
\text{a} \\
\ominus \\
\neg a \\
\ominus \\
\text{a} \\
\ominus
\end{array}
\]

\(a \cup b \):

\[
\begin{array}{c}
\text{a} \\
\ominus \\
\neg a \\
\ominus \\
\text{b} \\
\ominus
\end{array}
\]

(Can also do them without the error paths.)

For the general construction for any formula \(\phi \), see H&R, Section 3.6.3.
LTL Model Checking Idea

We reformulated the LTL model checking problem to:

$$\mathcal{L}(\mathcal{M}) \cap \overline{\mathcal{L}(\phi)} = \emptyset$$

Now:

1. Observe that $\overline{\mathcal{L}(\phi)} = \mathcal{L}(\neg \phi)$
2. Let A_ϕ be a Büchi automaton such that $\mathcal{L}(\phi) = \mathcal{L}(A_\phi)$.
3. For a suitable notion of composition $\mathcal{M} \otimes A$ of a transition system \mathcal{M} and a Büchi automaton A, we have that

$$\mathcal{L}(\mathcal{M} \otimes A) = \mathcal{L}(\mathcal{M}) \cap \mathcal{L}(A)$$

4. So, to check $\mathcal{M} \models \phi$, instead check

$$\mathcal{L}(\mathcal{M} \otimes A_{\neg \phi}) = \emptyset$$

5. Use *Fair CTL model checking* to check this last property. See H&R.
Example: Model Checking LTL formula $G \ p$

1. Construct an automaton $A_{\neg G \ p} = A_{F \neg p}$ for $F \neg p$, which takes as input infinite paths of states of a model M and accepts just those paths that satisfy $F \neg p$.

2. Compose $A_{F \neg p}$ and M and ask whether the language of the composition is empty.

3. If the language is empty, then we know that $G \ p$ is satisfied by M. If not and we exhibit an accepting path, then that path is a counter-example to $G \ p$: it both is a path in M and it satisfies $A_{F \neg p} = A_{\neg G \ p}$.

The next few slides examine this within the context of NuSMV.
Emulating Büchi automata in NuSMV

Here is a transition system and LTL formula *emulating* a Büchi automaton $A \mathcal{F} \neg p$ for checking $F \neg p$:

-- A 2 state automaton for $F \not\rightarrow p$.

MODULE formula(sys)
 VAR
 st : { 0, 1 };
 ASSIGN
 init(st) := 0;
 next(st) := case
 -- loop in state 0 if p is always true
 st = 0 & sys.p : 0;
 -- If ever p is false, transition to state 1
 st = 0 & !sys.p : 1;
 -- then loop forever more in state 1
 st = 1 : 1;
 esac;

 -- Accepting states: {1} as $st = 1$ occurs infinitely often

 -- LTL expression of acceptance condition:
 -- Specification is true just when there are no accepting paths

 LTLSPEC ! G F st = 1;
Composing Büchi automaton and transition system

This composition checks LTL property $G p$ of the model:

-- A model M with 2 alternative definitions of a state property p

MODULE model
VAR
 st : 0..2;
ASSIGN
 init(st) := 0;
 next(st) := case
 st = 0 : {1,2};
 st = 1 : 1;
 st = 2 : 2;
 esac;
DEFINE
 p := st = 0 | st = 1;
 -- p := TRUE

MODULE main
VAR
 m : model;
 f : formula(m);
Model Checking Results 1

With this definition in the model:

\[p := st = 0 \lor st = 1; \]

we get:

```
-- specification !( G ( F st = 1)) IN f is false
-- as demonstrated by the following execution sequence
Trace Type: Counterexample
-> State: 1.1 <-
   m.st = 0
   f.st = 0
   m.p = TRUE
-> State: 1.2 <-
   m.st = 2
   m.p = FALSE
-- Loop starts here
-> State: 1.3 <-
   f.st = 1
-- Loop starts here
-> State: 1.4 <-
-> State: 1.5 <-
```

The acceptance condition for a run in this composition is just the acceptance condition for a run of the formula automaton.
With this definition in the model:

```sh
p := TRUE;
```

we get:

```sh
-- specification !( G ( F st = 1)) IN f is true
```
Summary

- LTL Model Checking (H&R 3.6.2, 3.6.3)
 - Transition systems and formulas as languages
 - Formulas as Büchi automata
 - Simulating Büchi automata in NuSMV
- Next time: Binary Decision Diagrams

[BDDs are] one of the only really fundamental data structures that came out in the last twenty-five years.

— Donald Knuth “Fun with Binary Decision Diagrams”