Formal Verification

Lecture 2: Linear Temporal Logic

Jacques Fleuriot jdf@inf.ed.ac.uk

Recap

- Previously:
 - Model Checking, and an informal introduction to LTL
- ► This time: Linear Temporal Logic
 - Syntax
 - Semantics
 - Equivalences

LTL – Syntax

LTL = Linear(-time) Temporal Logic

Assume some set Atom of atomic propositions

Syntax of LTL formulas ϕ :

 $\phi ::= p \mid \neg \phi \mid \phi \lor \phi \mid \phi \land \phi \mid \phi \to \phi \mid \mathbf{X} \phi \mid \mathbf{F} \phi \mid \mathbf{G} \phi \mid \phi \mathbf{U} \phi$

where $p \in Atom$.

Pronunciation:

- $\mathbf{X}\phi \operatorname{neXt}\phi$
- $\mathbf{F}\phi \mathbf{F}uture \ \phi$
- $\mathbf{G}\phi \mathbf{Globally} \ \phi$
- ▶ $\phi \mathbf{U} \psi \phi$ Until ψ

Other common connectives: **W** (weak until), **R** (release). Precedence high-to-low: $(\mathbf{X}, \mathbf{F}, \mathbf{G}, \neg), (\mathbf{U}), (\land, \lor), \rightarrow$.

► E.g. Write $\mathbf{F}p \land \mathbf{G}q \rightarrow p \mathbf{U} r$ instead of $((\mathbf{F}p) \land (\mathbf{G}q)) \rightarrow (p \mathbf{U} r)$.

LTL – Informal Semantics

LTL formulas are evaluated at a position *i* along a path π through the system (a path is a sequence of states connected by transitions)

- An atomic *p* holds if *p* is true the state at position *i*.
- ► The propositional connectives ¬, ∧, ∨, → have their usual meanings.
- Meaning of LTL connectives:
 - $\mathbf{X}\phi$ holds if ϕ holds at the next position;
 - **F** ϕ holds if there exists a future position where ϕ holds;
 - $\mathbf{G}\phi$ holds if, for all future positions, ϕ holds;
 - ► $\phi U \psi$ holds if there is a future position where ψ holds, and ϕ holds for all positions prior to that.
 - $\phi \mathbf{R}\psi$ holds if there is a future position where ϕ becomes true, and ψ holds for all positions prior to and including that i.e. ϕ 'releases' ψ .
 - It is equivalent to $\neg(\neg\phi \mathbf{U}\neg\psi)$.
 - ► Thus **R** is the dual of **U**.

This will be made more formal in the next few slides.

LTL - Formal Semantics: Transition Systems and Paths

Definition (Transition System)

A transition system (or model) $\mathcal{M} = \langle S, \rightarrow, L \rangle$ consists of:

S	a finite set of states
$\rightarrow \subseteq S \times S$	transition relation
$L: S \to \mathcal{P}(Atom)$	a labelling function

such that $\forall s_1 \in S$. $\exists s_2 \in S$. $s_1 \rightarrow s_2$

Note: *Atom* is a fixed set of atomic propositions, $\mathcal{P}(Atom)$ is the powerset of *Atom*.

Thus, L(s) is just the set of atomic propositions that is true in state *s*.

Definition (Path)

A *path* π in a transition system $\mathcal{M} = \langle S, \rightarrow, L \rangle$ is an infinite sequence of states s_0, s_1, \dots such that $\forall i \geq 0$. $s_i \rightarrow s_{i+1}$.

Paths are written as: $\pi = s_0 \rightarrow s_1 \rightarrow s_2 \rightarrow ...$

LTL – Formal Semantics: Satisfaction by Path

Satisfaction: $\pi \models^i \phi$ – "path at position *i* satisfies formula ϕ "

$$\begin{array}{ll} \pi \models^{i} \top \\ \pi \not\models^{i} \mu & \text{iff } p \in L(s_{i}) \\ \pi \models^{i} \rho & \text{iff } \pi \not\models^{i} \phi \\ \pi \models^{i} \neg \phi & \text{iff } \pi \not\models^{i} \phi \text{ and } \pi \models^{i} \psi \\ \pi \models^{i} \phi \land \psi & \text{iff } \pi \models^{i} \phi \text{ or } \pi \models^{i} \psi \\ \pi \models^{i} \phi \rightarrow \psi & \text{iff } \pi \models^{i} \phi \text{ implies } \pi \models^{i} \psi \\ \pi \models^{i} \mathbf{X} \phi & \text{iff } \pi \models^{i+1} \phi \\ \pi \models^{i} \mathbf{F} \phi & \text{iff } \exists j \ge i. \pi \models^{j} \phi \\ \pi \models^{i} \mathbf{G} \phi & \text{iff } \forall j \ge i. \pi \models^{j} \phi \\ \pi \models^{i} \phi_{1} \mathbf{U} \phi_{2} & \text{iff } \exists j \ge i. \pi \models^{j} \phi_{2} \text{ and } \forall k \in \{i..j-1\}. \pi \models^{k} \phi_{1} \\ \pi \models^{i} \phi_{1} \mathbf{R} \phi_{2} & \text{iff } (\forall j \ge i. \pi \models^{j} \phi_{1} \text{ and } \forall k \in \{i..j\}. \pi \models^{k} \phi_{2}) \end{array}$$

LTL – Formal Semantics: Alternative Satisfaction by Path

Alternatively, we can define $\pi \models \phi$ using the notion of *i*th suffix $\pi^i = s_i \rightarrow s_{i+1} \rightarrow \dots$ of a path $\pi = s_0 \rightarrow s_1 \rightarrow \dots$

For example, the alternative definition of satisfaction for G would be:

$$\pi \models \mathbf{G} \phi \qquad \text{iff} \qquad \forall j \ge 0. \ \pi^j \models \phi$$

instead of

$$\pi\models^0 \mathbf{G}\,\phi \qquad \text{iff} \qquad \forall j\geq 0.\;\pi\models^j \phi$$

Satisfaction in terms of \models for the other connectives is left as an exercise.

- $\pi \models^i \phi$ is better for understanding, and needed for past-time operators.
- $\pi \models \phi$ is needed for the semantics of branching-time logics, like CTL.

LTL Semantics: Satisfaction by a Model

For a model \mathcal{M} , we write

 $\mathcal{M}, s \models \phi$

if, for every execution path $\pi \in \mathcal{M}$ starting at state s, we have

 $\pi\models^0\phi$

1. $\pi \models^{i} \mathbf{G}$ *invariant invariant* is true for all future positions $\forall j \ge i. \ \pi \models^{j} invariant$ $\forall j \ge i. invariant \in L(s_{j})$

 π ⊨ⁱ G invariant invariant is true for all future positions ∀j ≥ i. π ⊨^j invariant ∀j ≥ i. invariant ∈ L(s_j)
π ⊨ⁱ G ¬(read ∧ write) In all future positions, it is not the case that *read* and *write* ∀j ≥ i. read ∉ L(s_i) ∨ write ∉ L(s_i)

1. $\pi \models^{i} \mathbf{G}$ invariant

invariant is true for all future positions

 $\forall j \geq i. \ \pi \models^j invariant$

 $\forall j \geq i. invariant \in L(s_j)$

2. $\pi \models^i \mathbf{G} \neg (\mathit{read} \land \mathit{write})$

In all future positions, it is not the case that *read* and *write*

$$\forall j \geq i. read \notin L(s_j) \lor write \notin L(s_j)$$

3. $\pi \models^{i} \mathbf{G}(request \rightarrow \mathbf{F}grant)$

At every position in the future, a *request* implies that there exists a future point where *grant* holds.

 $\forall j \geq i. request \in L(s_j) \text{ implies } \exists k \geq j. grant \in L(s_k).$

1. $\pi \models^{i} \mathbf{G}$ invariant

invariant is true for all future positions

 $\forall j \geq i. \ \pi \models^j invariant$

 $\forall j \geq i. invariant \in L(s_j)$

2. $\pi \models^i \mathbf{G} \neg (\mathit{read} \land \mathit{write})$

In all future positions, it is not the case that *read* and *write*

$$\forall j \geq i. \ read \notin L(s_j) \lor write \notin L(s_j)$$

3.
$$\pi \models^i \mathbf{G}(request \to \mathbf{F}grant)$$

At every position in the future, a *request* implies that there exists a future point where *grant* holds.

 $\forall j \geq i. request \in L(s_j) \text{ implies } \exists k \geq j. grant \in L(s_k).$

4. $\pi \models^{i} \mathbf{G}(request \rightarrow (request \ \mathbf{U} \ grant))$

At every position in the future, a *request* implies that there exists a future point where *grant* holds, and *request* holds up until that point.

$$\forall j \geq i. \ request \in L(s_j) \ implies$$

 $\exists k \geq j. \ grant \in L(s_k) \ and \ \forall l \in \{j, k-1\}. \ request \in L(s_l).$

$$\phi \equiv \psi \quad \stackrel{\cdot}{=} \quad \forall \mathcal{M}. \forall \pi \in \mathcal{M}. \forall i. \ \pi \models^{i} \phi \leftrightarrow \pi \models^{i} \psi$$

$$\phi \equiv \psi \quad \stackrel{\cdot}{=} \quad \forall \mathcal{M}. \forall \pi \in \mathcal{M}. \forall i. \ \pi \models^{i} \phi \leftrightarrow \pi \models^{i} \psi$$

Dualities from Propositional Logic:

$$\neg(\phi \land \psi) \equiv \neg\phi \lor \neg\psi \qquad \neg(\phi \lor \psi) \equiv \neg\phi \land \neg\psi$$

$$\phi \equiv \psi \quad \stackrel{\cdot}{=} \quad \forall \mathcal{M}. \forall \pi \in \mathcal{M}. \forall i. \ \pi \models^{i} \phi \leftrightarrow \pi \models^{i} \psi$$

Dualities from Propositional Logic:

$$\neg(\phi \land \psi) \equiv \neg\phi \lor \neg\psi \qquad \neg(\phi \lor \psi) \equiv \neg\phi \land \neg\psi$$

Dualities from LTL:

$$\neg \mathbf{X}\phi \equiv \mathbf{X}\neg\phi \qquad \neg \mathbf{G}\phi \equiv \mathbf{F}\neg\phi \qquad \neg \mathbf{F}\phi \equiv \mathbf{G}\neg\phi$$
$$\neg(\phi \mathbf{U} \psi) \equiv \neg\phi \mathbf{R} \neg\psi \qquad \neg(\phi \mathbf{R} \psi) \equiv \neg\phi \mathbf{U} \neg\psi$$

$$\phi \equiv \psi \quad \stackrel{\cdot}{=} \quad \forall \mathcal{M}. \forall \pi \in \mathcal{M}. \forall i. \ \pi \models^{i} \phi \leftrightarrow \pi \models^{i} \psi$$

Dualities from Propositional Logic:

$$\neg(\phi \land \psi) \equiv \neg\phi \lor \neg\psi \qquad \neg(\phi \lor \psi) \equiv \neg\phi \land \neg\psi$$

Dualities from LTL:

$$\neg \mathbf{X}\phi \equiv \mathbf{X}\neg\phi \qquad \neg \mathbf{G}\phi \equiv \mathbf{F}\neg\phi \qquad \neg \mathbf{F}\phi \equiv \mathbf{G}\neg\phi$$
$$\neg(\phi \mathbf{U} \psi) \equiv \neg\phi \mathbf{R}\neg\psi \qquad \neg(\phi \mathbf{R} \psi) \equiv \neg\phi \mathbf{U}\neg\psi$$

Distributive laws:

$$\mathbf{G}(\phi \wedge \psi) \equiv \mathbf{G}\phi \wedge \mathbf{G}\psi \qquad \qquad \mathbf{F}(\phi \vee \psi) \equiv \mathbf{F}\phi \vee \mathbf{F}\psi$$

Inter-definitions:

$$\mathbf{F}\phi \equiv \neg \mathbf{G}\neg\phi \qquad \mathbf{G}\phi \equiv \neg \mathbf{F}\neg\phi \qquad \mathbf{F}\phi \equiv \top \mathbf{U} \ \phi \qquad \mathbf{G}\phi \equiv \bot \ \mathbf{R} \ \phi$$

Inter-definitions:

$$\mathbf{F}\phi \equiv \neg \mathbf{G}\neg \phi$$
 $\mathbf{G}\phi \equiv \neg \mathbf{F}\neg \phi$ $\mathbf{F}\phi \equiv \top \mathbf{U} \phi$ $\mathbf{G}\phi \equiv \bot \mathbf{R} \phi$
Idempotency:

$$\mathbf{FF}\phi \equiv \mathbf{F}\phi \qquad \qquad \mathbf{GG}\phi \equiv \mathbf{G}\phi$$

Inter-definitions:

$$\mathbf{F}\phi \equiv \neg \mathbf{G}\neg \phi \qquad \mathbf{G}\phi \equiv \neg \mathbf{F}\neg \phi \qquad \mathbf{F}\phi \equiv \top \mathbf{U} \ \phi \qquad \mathbf{G}\phi \equiv \bot \mathbf{R} \ \phi$$

Idempotency:

$$\mathbf{FF}\phi \equiv \mathbf{F}\phi \qquad \qquad \mathbf{GG}\phi \equiv \mathbf{G}\phi$$

Weak and strong until:

 $\phi \mathbf{W} \psi \equiv \phi \mathbf{U} \psi \lor \mathbf{G} \phi \qquad \phi \mathbf{U} \psi \equiv \phi \mathbf{W} \psi \land \mathbf{F} \psi$

Inter-definitions:

$$\mathbf{F}\phi \equiv \neg \mathbf{G}\neg \phi \qquad \mathbf{G}\phi \equiv \neg \mathbf{F}\neg \phi \qquad \mathbf{F}\phi \equiv \top \mathbf{U} \ \phi \qquad \mathbf{G}\phi \equiv \perp \mathbf{R} \ \phi$$

Idempotency:

$$\mathbf{FF}\phi \equiv \mathbf{F}\phi \qquad \qquad \mathbf{GG}\phi \equiv \mathbf{G}\phi$$

Weak and strong until:

$$\phi \mathbf{W} \psi \equiv \phi \mathbf{U} \psi \lor \mathbf{G} \phi \qquad \phi \mathbf{U} \psi \equiv \phi \mathbf{W} \psi \land \mathbf{F} \psi$$

Some more surprising equivalences:

 $\mathbf{GFG}\phi \equiv \mathbf{FG}\phi \qquad \mathbf{FGF}\phi \equiv \mathbf{GF}\phi \qquad \mathbf{G}(\mathbf{F}\phi \lor \mathbf{F}\psi) \equiv \mathbf{GF}\phi \lor \mathbf{GF}\psi$

Summary

- ▶ Introduction to Model Checking (H&R 3.2)
 - Semantics of LTL
- Next time:
 - Introduction to NuSMV