
SAT and SMT algorithms

Paul Jackson

School of Informatics
University of Edinburgh

Formal Verification
Spring 2018

Basic question

Given a propositional logic formula, is it satisfiable?
Standard to always put formulas into Conjunctive Normal Form or
CNF.

I By introducing new variables this can be done with only
constant-factor growth in formula size.

Terminology

I An atom p is a propositional symbol

I A literal l is an atom p or the negation of an atom ¬p.

I A clause C is a disjunction of literals l1 ∨ . . . ∨ ln.

I A CNF formula F is a conjunction of clauses C1 ∧ . . . ∧ Cm

2 / 31

Abstract rules for DPLL

Core algorithms used in SAT and SMT solvers derived from DPLL
algorithm (Davis,Putnam,Logemann,Loveland) from 1962.

Here present algorithms using abstract rule-based system due to
Nieuwenhuis, Oliveras and Tinelli.

I General structure of algorithms easy to see

I Can work through simple examples on paper

3 / 31

General approach

I Try to incrementally build a satisfying truth assignment M for
a CNF formula F

I Grow M by
I guessing truth value of a literal not assigned in M
I deducing truth value from current M and F .

I If reach a contradiction (M |= ¬C for some C ∈ F), undo
some assignments in M and try starting to grow M again in a
different way.

I If all variables from M assigned and no contradiction, a
satisfying assignment has been found for F

I If exhaust possibilities for M and no satisfying assignment is
found, F is unsatisfiable

4 / 31

Assignments and States
States:

fail or M ‖ F

where

I M is sequence of literals and decision points •
denoting a partial truth assignment

I F is a set of clauses denoting a CNF formula

First literal after each • is called a decision literal

Decision points start suffixes of M that might be discarded when
choosing new search direction

Def: If M = M0 •M1 • · · · •Mn where each Mi contains no
decision points

I Mi is decision level i of M

I M [i] = M0 • · · · •Mi

5 / 31

Initial and final states

Initial state

I () ‖ F0

Expected final states

I fail if F0 is unsatisfiable
I M ‖ G otherwise, where

I G is equivalent to F0

I M satisfies G

6 / 31

Classic DPLL rules

Decide

M ‖ F =⇒ M • l ‖ F if
{
l or ¬l in clause of F ,
l is undefined in M

UnitPropagate

M ‖ F ,C ∨ l =⇒ M l ‖ F ,C ∨ l if
{
M |= ¬C ,
l is undefined in M

Fail

M ‖ F ,C =⇒ fail if

{
M |= ¬C ,
• 6∈ M

Backtrack

M • l N ‖ F ,C =⇒ M ¬l ‖ F ,C if

{
M • l N |= ¬C
• 6∈ N

7 / 31

Strategies for applying rules

I Are many heuristics for choosing literal l in Decide rule.
I MOMS: choose literal with the Maximum number of

Occurrences in Minimum Size clauses.
I VSIDS: choose literal that has most frequently been involved

in recent conflict clauses.

I UnitPropagate applied with higher priority than Decide since
it does not introduce branching in search

I Typically many UnitPropagate applications for each Decide
I BCP (Boolean Constraint Propagation): repeated application

of UnitPropagate

8 / 31

Strategies for applying rules (cont)

I After each Decide or UnitPropagate should check for a
conflicting clause, a clause C for which

M |= ¬C .

If there is a conflicting clause, Backtrack or Fail are applied
immediately to avoid pointless search.

9 / 31

Example execution

C1 C2 C3 C4

M x̄1 ∨ x2 x̄3 ∨ x4 x̄5 ∨ x̄6 x6 ∨ x̄5 ∨ x̄2 Rule
() u u u u u u u u u

•x1 0 u u u u u u u u
Decide x1

•x1x2 0 1 u u u u u u 0
UnitProp C1

•x1x2 • x3 0 1 0 u u u u u 0
Decide x3

•x1x2 • x3x4 0 1 0 1 u u u u 0
UnitProp C2

•x1x2 • x3x4 • x5 0 1 0 1 0 u u 0 0
Decide x5

•x1x2 • x3x4 • x5x̄6 0 1 0 1 0 1 0 0 0
UnitProp C3

•x1x2 • x3x4x̄5 0 1 0 1 1 u u 1 0
Backtrack C4

•x1x2 • x3x4x̄5x̄6 0 1 0 1 1 1 0 1 0
Decide x̄6

I Last state here is final – no further rules apply
I Derivation shows that C1 ∧ C2 ∧ C3 ∧ C4 is satisfiable
I Final M is a satisfying assignment

10 / 31

Implication graphs

An implication graph describes the dependencies between literals in
an assignment

I 1 node per assigned literal
I Node label l @i indicates literal l is assigned true at decision

level i .

I Roots of graph (nodes without in-edges) are literals in M0 and
decision literals

I Edges l1 → l , · · · , ln → l added if unit propagation with
clause ¬l1 ∨ · · · ∨ ¬ln ∨ l sets literal l

I Each edge labelled with clause

I When current assignment is conflicting with conflicting clause
¬l1 ∨ · · · ∨ ¬ln, then conflict node κ and edges
l1 → l , · · · , ln → l are added

I Each edge labelled with conflicting clause

11 / 31

Partial Implication graph example

Only shows current decision-level nodes and immediately-preceding
nodes.

C1 = ā ∨ b̄ ∨ c C2 = c̄ ∨ d C3 = d̄ ∨ f̄
C4 = d̄ ∨ e ∨ g C5 = f ∨ ḡ

Decision literal →
a @4

b @2

c @4 d @4

ē @1

f̄ @4

g @4

κC1

C
1

C2

C3

C
4

C4

C
5

C5

12 / 31

Backjump clause inference

The implication graph enables inference of new clauses entailed by
the current formula F and made false by the current assignment.

I Consider any cut of an implication graph with
I On right: conflicting node κ
I On left: decision literal for current level and all literals at lower

levels

I If literals on immediate left of cut are l1, . . . , ln, then can infer
the new clause

(l1 ∧ · · · ∧ ln)⇒ false

or equivalently
¬l1 ∨ · · · ∨ ¬ln

13 / 31

Clause inference example

C1 = ā ∨ b̄ ∨ c C2 = c̄ ∨ d C3 = d̄ ∨ f̄
C4 = d̄ ∨ e ∨ g C5 = f ∨ ḡ

Decision literal →
a @4

b @2

c @4 d @4

ē @1

f̄ @4

g @4

κC1

C
1

C2

C3

C
4

C4

C
5

C5

Cut 1

b̄ ∨ ā ∨ e

Cut 2

d̄ ∨ eBackjump clause:

14 / 31

Backjumping
If

I current assignment has form M • l N, and
I the inferred clause has form C ′ ∨ l ′ where l ′ is the only literal

at the current decision level, and
I all literals of C ′ are assigned in M,

then it is legitimate to
I backjump, set the assignment to M, and
I noting that C ′ ∨ l ′ has exactly one literal unassigned in M, to

apply unit propagation to extend the assignment to M l ′.

Such a clause C ′ ∨ l ′ is called a backjump clause

A backjump clause can always be formed using the decision literal
from the current level

Smaller backjump clauses can sometimes be discovered that
exploit unique implication points (UIPs), literals on every path
from the current decision literal to the conflict node κ.

15 / 31

Backjump rule
Replaces and generalises Backtrack rule in modern DPLL
implementations

Backjump

M • l N ‖ F ,C =⇒ M l ′ ‖ F ,C if

M • l N |= ¬C , and there
is some clause C ′∨l ′ such
that:
− F ,C |= C ′ ∨ l ′,
− M |= ¬C ′,
− l ′ is undefined in M,
and
− l ′ or ¬l ′ occurs in F

or in M • l N

I C is the conflicting clause

I C ′ ∨ l ′ is the backjump clause
16 / 31

Learning

Learn

M ‖ F =⇒ M ‖ F ,C if

each atom of C occurs in
F or in M,
F |= C

I Common C are backjump clauses from the Backjump rule.

I Learned clauses record information about parts of search
space to be avoided in future search

I CDCL (Conflict Driven Clause Learning)
= Backjump + Learn

17 / 31

Forgetting

Forget
M ‖ F ,C =⇒ M ‖ F if F |= C

I Applied to C considered less important.

I Essential for controlling growth of required storage.

I Performance can degrade as F grows, so shrinking F can
improve performance.

18 / 31

Restarting

Restart
M ‖ F =⇒ () ‖ F

I Only used if F grown using learning.

I Additional knowledge causes Decide heuristics to work
differently and often explore search space in more compact
way.

I To preserve completeness, applied repeatedly with increasing
periodicity.

19 / 31

Why is DPLL correct? 1

Lemma (1 - nature of reachable states)

Assume () ‖ F =⇒∗ M ‖ F ′. then

1. F and F ′ are equivalent

2. If M is of the form M0 • l1M1 · · · • lnMn where all Mi are •
free, then F , l1, . . . li |= Mi for all i in 0 . . . n.

Lemma (2 - nature of final states)

If () ‖ F =⇒∗ S and S is final (no further transitions possible),
then either

1. S = fail, or

2. S = M ‖ F ′ where M |= F

20 / 31

Why is DPLL correct? 2

Lemma (3 - transition sequences never go on for ever)

Every derivation () ‖ F =⇒ S1 =⇒ S2 =⇒ · · · is finite

Proof.
Given M of form M0 •M1 · · · •Mn where all Mi are • free, define
the rank of M, ρ(M) as 〈r0, r1, . . . , rn〉 where ri = |Mi |. Every
derivation must be finite as each basic DPLL rule strictly increases
the rank in a lexicographic order and the image of ρ is finite.

21 / 31

Why is DPLL correct? 3

Theorem (1 - termination in fail state)

If () ‖ F =⇒∗ S and S is final, then

1. if S is fail, then F is unsatisfiable

2. if F is unsatisfiable then S is fail

22 / 31

Why is DPLL correct? 4

Proof.

1. We have () ‖ F =⇒∗ M ‖ F ′ =⇒ fail.

By Fail rule definition, there is a C ∈ F ′ s.t. M |= ¬C .

Since M is • free, we have by Lemma 1(2) that F |= M, and
therefore F |= ¬C .

However, F ′ |= C and by Lemma 1(1) F |= C .

Hence, F must be unsatisfiable.

2. By Lemma 2.

23 / 31

Abstract DPLL modulo theories

Start just with one theory T . E.g.

I Equality with uninterpreted functions

I Linear arithmetic over Z or R.

Propositional atoms now both

I Propositional symbols

I Atomic relations over T involving individual expressions.
E.g. f (g(a)) = b or 3a + 5b ≤ 7.

Previous rules (e.g. Decide, UnitPropagate) and |= (propositional
entailment) treat syntactically distinct atoms as distinct

New rules involve |=T (entailment in theory T)

24 / 31

Theory learning
T -Learn

M ‖ F =⇒ M ‖ F ,C if

each atom of C occurs in
F or in M,
F |=T C

I One use is for catching when M is inconsistent from T point
of view.

I Say {l1, . . . , ln} ⊆ M such that F |=T l1 ∧ · · · ∧ ln ⇒ false
I Then add C = ¬l1 ∨ · · · ∨ ¬ln
I As C is conflicting, the Backjump or Fail rule is enabled
I Theory solvers can identify unsat cores, small subsets of literals

sufficient for creating a conflicting clause

I Frequency of checks F |=T C needs careful regulation, as cost
might be far higher than basic DPLL steps.

I Given size of F often just check |=T C . In this case C is
called a theory lemma.

25 / 31

Theory propagation

Guiding growth of M rather than just detecting when it is
T -inconsistent.

TheoryPropagate

M ‖ F =⇒ M l ‖ F if

{
M |=T l ,
l or ¬l occurs in F
l is undefined in M

I If applied well, can dramatically increase performance

I Worth applying exhaustively in some cases before resorting to
Decide

26 / 31

Integration of SAT and theory solvers

Use of T -Learn and TheoryPropagate rules requires close
integration of SAT and theory solvers

I SAT solvers need modification to be able to call out to theory
solvers

I Useful to have theory solvers incremental, able to be rerun
efficiently when input is some small increment on previous
input

I Also need ability to efficiently retract blocks of input to cope
with backjumping

27 / 31

Handling multiple theories
Consider formula F mixing theories of linear real arithmetic and
uninterpreted functions:

f (x1, 0) ≥ x3 ∧ f (x2, 0) ≤ x3 ∧
x1 ≥ x2 ∧ x2 ≥ x2 ∧

x3 − f (x1, 0) ≥ 1

The popular Nelson-Oppen combination procedure involves first
purifying, adding additional variables and creating an equisatisfiable
formula with each atom over just one of the theories.

Formula F above is equisatisfiable with F1 ∧ F2, where

F1 = a1 ≥ x3 ∧ a2 ≤ x3 ∧ x1 ≥ x2 ∧ x2 ≥ x1 ∧
x3 − a1 ≥ 1 ∧ a0 = 0

F2 = a1 = f (x1, a0) ∧ a2 = f (x2, a0)

F1 just involves linear real arithmetic and F2 just involves an
uninterpreted function

28 / 31

Nelson-Oppen example

Separate theory solvers can work on F1 and F2, exchanging
equalities

i 1 2
R arith EUF

Original Fi a1 ≥ x3 a1 = f (x1, a0)
a2 ≤ x3 a2 = f (x2, a0)
x1 ≥ x2
x2 ≥ x1
x3 − a1 ≥ 1
a0 = 0

Deduced x1 = x2(∗) x1 = x2
atoms a1 = a2 a1 = a2(∗)

a1 = x3(∗)
false(∗)

The (∗) marks indicate when inference is in the respective theory

29 / 31

Nelson-Oppen

The basic Nelson-Oppen procedure relies on combined theories
being convex.

I Linear real arithmetic and EUF (Equality and Uninterpreted
Functions) are convex.

I Linear integer arithmetic and bit-vector theories are not.

Extensions of Nelson-Oppen can handle a number of non-convex
theories.

In general, a combination of decidable theories might be
undecidable

30 / 31

Further reading
1. A SAT Solver Primer. David Mitchell. EATCS Bulletin (The

Logic in Computer Science Column), Volume 85, February
2005.

2. Efficient Conflict Driven Learning in a Boolean Satisfiability
Solver. L. Zhang, C. F. Madigan, M. H. Moskewicz and S.
Malik. ICCAD 01:

3. Solving SAT and SAT Modulo Theories: From an Abstract
DavisPutnamLogemannLoveland Procedure to DPLL(T)
Robert Neiuwenhuis, Albert Oliveras, Cesare Tinelli. Journal
of the ACM. 53(6):937-977, 2006

4. Slides and videos from the 2012 SAT/SMT Summer School
https://es-static.fbk.eu/events/satsmtschool12/

These slides draw mainly on 3 and part of 2. Tinelli’s presentation
in 4 also expands on the Abstract DPLL approach to SAT and
SMT.

31 / 31

https://es-static.fbk.eu/events/satsmtschool12/

