
Formal Programming Language Semantics note 8 CS4/MSc/TPG 18.11.03

Formal Programming Language Semantics note 8

Evaluation and binding mechanisms

In this note we will consider several possible dynamic semantics for the language
IMPb of Note 7. These will illustrate some important distinctions, such as lazy vs.
eager evaluation, and static vs. dynamic binding. We will also consider how the
static and dynamic semantics may be related via by the property of type safety.

Eager evaluation. Let us consider one way to modify our operational semantics
of IMP to give one for IMPb. First, since we have lumped arithmetic and boolean
expressions into a single class of expressions e, let us define the set V of values
to be the disjoint union Z t T, and let us take the set Sb of states to be (I × V)∗,
i.e. the set of finite lists of pairs associating values to identifiers. As in Note 7,
the switch from partial functions to lists allows us to cope with the possibility of
more than one variable with the same name, with one temporarily “hiding” the
other. We use v to range over V, and σ to range over Sb. We will set σ(|X|) = v iff
(X, v) is the rightmost pair occurring in σ whose first component is v.

We now wish to give rules for deriving evaluation statements of the forms
〈e, σ〉 ⇓ v and 〈c, σ〉 ⇓ σ′. Most of these rules are just simple adaptations of the
corresponding rules for IMP (check that you know how they should go). The only
new feature is the let construct, for which we may give the following rule:

〈e, σ〉 ⇓ v 〈c, σ′′〉 ⇓ σ′′′

〈let DX = e in c end , σ〉 ⇓ σ′ σ′′ = σ; (X, v), σ′′′ = σ′; (X,−)

This captures the idea that the original state σ is extended with a new variable
called X to give a state σ′′; the body of the let command (which may refer to X)
is then run on this state yielding a new state σ′′′; and finally we dispose of the
local variable X to give the state σ′. The symbol “−” in the second side-condition
means “anything” (we could also have used a dummy metavariable v′).

This rule embodies a particular choice of evaluation behaviour of the let
construct: the execution always begins by evaluating e and binding the resulting
value to X, regardless of whether X is ever actually used in the body of the block.
This evaluation strategy is often known as eager evaluation since we evaluate e
“as soon as possible” without waiting to see whether the value is ever needed.
Such a mechanism is also known as call-by-value, since occurrences of X within
c effectively stand for a fixed value v which has been previously computed.

Lazy evaluation. We may contrast eager evaluation with various kinds of lazy
evaluation, in which we do not evaluate e until we actually need to know the

1

Formal Programming Language Semantics note 8 CS4/MSc/TPG 18.11.03

value of X. We can distinguish two kinds of lazy evaluation: call-by-name, in
which e is evaluated afresh each time we need to know the value of X (so we can
think of occurrences of X in c as standing for a formal expression or “name” for
X), and call-by-need, in which e is evaluated the first time we need to know the
value of X, and the value is then stored for later use. It is easy to see that for
a given program the call-by-value, call-by-name and call-by-need mechanisms
could all lead to different results, since the value of e may depend on the current
value of other variables.

To give a formal semantics that captures call-by-name evaluation, we need
to change our notion of state once again. The idea is that an identifier will no
longer be associated with a fixed value, but with a formal expression e which
we can evaluate as required. Let us therefore take Sb = (I × Exp)∗ as our set of
states (recall that Exp is a phrase category in our grammar, and can be used to
denote the corresponding set of phrases). Again, most of the operational rules
are essentially as for IMP, but the rule for let now becomes:

〈c, σ′′〉 ⇓ σ′′′

〈let DX = e in c end , σ〉 ⇓ σ′ σ′′ = σ; (X, e), σ′′′ = σ′; (X,−)

We also need to change the rule for variables, since in order to evaluate a variable
we now have to evaluate the corresponding expression rather than just look up
the value in the current state. One possibility is

〈e, σ〉 ⇓ v

〈X, σ〉 ⇓ v
σ(|X|) = e

This has the effect that e will be evaluated (relative to the current state) each
time we encounter the expression X.

We can capture call-by-need in a very similar way, except that the first time
we evaluate X we would like to replace the binding (X, e) by (X, v), so that e
does not have to be evaluated the next time we encounter X. This means that
the evaluation of expressions can sometimes have a side-effect on the state (as in
IMPs), so our evaluation statements will need to be of the form 〈e, σ〉 ⇓ 〈v, σ′〉. Most
of the rules only require trivial modifications to take account of this. However,
the rule for evaluating a variable X now becomes

〈e, σ〉 ⇓ 〈v, σ′〉
〈X, σ〉 ⇓ 〈v, σ′′〉

σ(|X|) = e, σ′′ = σ′[X 7→ v]

Static vs. dynamic binding. There is another subtle semantic choice implicit
in the above rules. To see this, consider the following program, which we intend
to be run in a state σ with σ(|Y|) = σ(|Z|) = 0:

let var X=Y-1 in let var Y=3 in Z := X end end

The first let construct will declare a local variable X and bind it to the expression
Y-1 , while the second will introduce a new local variable called Y. When we come

2

Formal Programming Language Semantics note 8 CS4/MSc/TPG 18.11.03

to evaluate the expression X in Z := X , we therefore have to evaluate Y-1 . Now
a question arises: does the Y here refer to the Y which was visible at the point
of the declaration X=Y+1 (i.e. the global variable Y), or to the Y which is visible
at the point of the expression X which we are evaluating (i.e. the local Y)? In the
former case, the value assigned to Z will be −1; in the latter case it will be 2.

These two possibilities are referred to as static and dynamic binding respec-
tively: in static binding the locations referred to by any identifiers within a decla-
ration are fixed at declaration time, whereas in dynamic binding these references
are resolved at evaluation time, and thus may be different for different occur-
rences of the variable in question. (Of course, in either case, the value of the
variable is that at evaluation time, assuming we are considering lazy evaluation.)

Let us look again at the above rule for variables under call-by-name:

〈e, σ〉 ⇓ v

〈X, σ〉 ⇓ v
σ(|X|) = e

Since the state σ here is the evaluation time environment, we can see that this
corresponds to a dynamic binding convention.1 To capture a call-by-name strat-
egy with static binding, we need to modify the premise so that e is evaluated
relative to the declaration time environment. So let us write σ |X to mean the
restriction of the state σ at X — that is, the portion of σ up to (but not including)
the rightmost binding for X. The rule for variables is now

〈e, σ′〉 ⇓ v

〈X, σ〉 ⇓ v
σ(|X|) = e, σ′ = σ |X

This has the effect that any variables occurring in e refer to the locations they
would have referred to at the point at which e appears in the program, i.e. at the
declaration X = e.

Notice that the static/dynamic distinction does not arise in the case of eager
evaluation: if we evaluate the expression e at declaration time then we are in
effect forced to adopt static binding. Note also that in all the above versions
of the semantics we have (for convenience) retained the familiar treatment of
assignments X := e, so that in effect these work in an “eager” way, assigning to
X the value of e rather than the expression e itself.

Exercises on static and dynamic binding.

(1) Formulate an appropriate rule for variables under a call-by-need strategy
with dynamic binding.

(2) Give an example showing that under a dynamic binding convention the
evaluation of an expression may “loop” indefinitely. How is this reflected in the
evaluation relation defined by the operational rules?

(3) There is another way to capture call-by-name evaluation, using the idea
of substitution. Let us write c[e/X] for the command obtained from c by textually

1Notice that our language has static scoping but dynamic binding. The same is true for meth-
ods in Java, for instance.

3

Formal Programming Language Semantics note 8 CS4/MSc/TPG 18.11.03

replacing all occurrences of the expression X by the expression e (we do not
replace occurrences of X on the left hand side of :=). Use this idea to formulate
an alternative rule for let which captures call-by-name evaluation. Does your
rule naturally give rise to static or dynamic binding? Can you modify it so that
it gives the other one?

(4) The approach using substitution works well if we drop assignments from
the language, but there is a problem in the presence of assignment. Give an
example to illustrate the problem. (This suggests that the substitution idea is
useful for functional languages, but not for imperative languages like IMPb.)

Type safety. Notice that types do not feature at all in our various dynamic
semantics of IMPb: neither the states nor the operational rules make reference
to the types of expressions. This reflects the idea that, in an implementation of
IMPb, we do not need to retain type information at runtime, so we can regard the
type system as a kind of “scaffolding” that gets thrown away after compilation.2

Nevertheless, the type system does serve a purpose: as long as a program
typechecks, it will be automatic that it produces results of the type we expect, so
we do not need to perform runtime typechecks to ensure this. We can now give
a precise formulation of this idea, which is known as type safety.3

Let us do this for the eager version of IMPb as an example. First, define
[[int]] = Z, [[bool]] = T (we will see more of this notation later!). Next, let us say
a state σ conforms to a static environment Γ if for some Xi, ui, vi we have

Γ = [(X1, u1), . . . , (Xn, un)], σ = [(X1, v1), . . . , (Xn, vn)], ∀i. vi ∈ [[ui]].

We may then say that (eager) IMPb is type-safe if the following properties hold:

• If σ conforms to Γ, Γ ` e : u and 〈e, σ〉 ⇓ v, then v ∈ [[u]].

• If σ conforms to Γ, Γ ` c : com and 〈c, σ〉 ⇓ σ′, then σ′ conforms to Γ.

For eager IMPb, these properties can indeed be proved as theorems. The proofs
work by induction on the derivations of 〈e, σ〉 ⇓ v [resp. 〈c, σ〉 ⇓ σ′].

Exercises. (1) Satisfy yourself that you can see how to prove the above prop-
erties (a complete proof would be rather tedious). (2) The statement of type safety
needs some minor modification for our other versions of IMPb to cope with the
different forms of evaluation statements. Give precise statements of type safety
for call-by-name IMPb with static and dynamic binding. Are these languages in
fact type-safe? If not, can you see how one might fix the problem?

John Longley

2The same is true for Standard ML. In Java, however, some type information does need to be
carried around at runtime, in order to achieve dynamic dispatch for methods.

3Type safety is a property that language designers and implementers really do care about in
practice, and it is not always trivial — there have in the past been languages, such as Eiffel, that
have later been discovered not to be type-safe. A considerable amount of effort has been put into
checking formally that certain key fragments of Java are type-safe.

4

