
Formal Programming Language Semantics note 3 CS4/MSc/TPG 30.09.04

Formal Programming Language Semantics note 3

Operational semantics of an imperative language

Let’s start by giving the operational semantics of a simple imperative language,
which we shall call IMP. This language is taken from Glynn Winskel’s book —
we will follow his presentation closely with some minor changes of notation. It is
very similar to the language LC discussed in the CS3 Language Semantics and
Implementation course.

Notation. We will use teletype font like this for sequences of symbols that
may appear as part of a program text. We will write:

• Z for the set of integers . . . ,−2,−1, 0, 1, 2, We use m, m′, n, n′ as variables
ranging over Z. For convenience, we will not bother to distinguish between
mathematical integers like 5 and the corresponding integer constants like 5,
the latter being a symbolic representation that might appear in a program.
(Philosophical conundrum: what ultimately is the number 5 anyway??)

• T for the set of truth values true, false. We use t, t′ to range over T. Again,
we will identify truth values with the boolean constants true , false .

• I for the set of identifiers. An identifier is a string of characters (such as X
or Catch22) suitable for use as a variable name in a program. We use X, X ′

to range over I.

A complete description of a language at the lexical level would include a pre-
cise definition of which strings of symbols were valid identifiers, but we will not
fuss over this here. The idea (for the moment) is that an identifier such as X can
be used to refer to the location in memory where the value of the program vari-
able X is stored. Notice the notational difference between X, which is an example
of a particular identifier or location, and X, which we use as a variable ranging
over all possible identifiers. To avoid confusion we will sometimes refer to things
like X as program variables, and things like X as metavariables.

Syntax of IMP. The three phrase categories of IMP are:

• Aexp (arithmetic expressions), ranged over by a, a0, a1,

• Bexp (boolean expressions), ranged over by b, b0, b1,

• Com (commands), ranged over by c, c0, c1,

1

Formal Programming Language Semantics note 3 CS4/MSc/TPG 30.09.04

We define the syntax of IMP by means of the following context-free grammar:

Aexp : a ::= n | X | a0 - a1 | a0 * a1

Bexp : b ::= t | a0 <= a1 | not b | b0 and b1

Com : c ::= skip | X := a | c0 ; c1 | if b then c0 else c1 | while b do c

For simplicity, we have gone for a rather minimalist language here: for in-
stance, we have dispensed with the forms a0 + a1, a0 = a1, b0 or b1, since these
may be replaced respectively by the forms

a0 - (0 - a1), (a0 <= a1) and (a1 <= a0), not ((not b0) and (not b1)).

Notice that this grammar is ambiguous in several different ways: for instance,
there are two possible parse trees for while b do c0 ; c1. [Exercise: in what other
ways is the above grammar ambiguous?] In a formal language definition, it
is usually important to give an unambiguous grammar, so that we know e.g.
which interpretation of the above phrase is the correct one. In general, there are
well-known techniques for turning a context-free grammar into an equivalent
unambiguous one (these are covered e.g. in the Language Processing thread of
CS2), and if need be we can also modify the language to allow the use of brackets
to specify the intended structure. However, all this tends to clutter the definition
of the language. Since we know that we could do this if we had to, and since
this is a course on semantics than syntax, we shall gloss over these issues and
content ourselves with a slightly informal approach, freely adding brackets where
needed to clarify the syntax of particular program phrases.

The notion of state. When we execute a program in a language like IMP on a
machine, at any point in time the machine will be in a certain state, in which
(for instance) the memory locations corresponding to program variables will hold
certain values. In our mathematical model, let us say a state is simply a total
function σ from I to Z, mapping each identifier X to the value σ(X) stored in
location X. (Note that in IMP all program variables are of integer type.) We will
write S for the set of all possible states and use σ, σ′, σ′′, . . . to range over S.

Typically, the actual state of a real machine will involve a lot more information
than is given by an element of S: for instance, there will be the details of how
program variables like X are mapped to actual memory addresses like 007F86D2 ,
and also probably some kind of stack which records which parts of the program
still have to be executed. The point, though, is that functions σ : I → Z give us an
abstract notion of state which contains all the information we need in order to
define how programs in IMP should behave. Thus, we can specify the semantics
of IMP whilst freeing ourselves from most of the grungy details of the machine
state (which, in any case, ought to be left up to the implementer).

At the moment, our notion of state will be a bit unrealistic if the set I is infinite
(or even of size 1030), since a real machine state will not contain an allocated

2

Formal Programming Language Semantics note 3 CS4/MSc/TPG 30.09.04

memory cell for every possible identifier. For the time being, then, let us suppose
that I is finite and quite small, and that we are only considering the behaviour
of programs involving a fixed set of variables for which memory has already been
allocated and some value assigned. Later on, we will consider more realistic
languages where new variables may be declared in the course of a program.

The evaluation relation. Now we come to the key idea of structural operational
semantics. We will define an evaluation relation for the language IMP, which tells
us what is supposed to happen when we evaluate or execute a certain program
phrase starting in a certain state. The evaluation relation will have the form

〈P, σ〉 ⇓ R

which informally will mean

“If the phrase P is evaluated or executed starting in the state σ, the
resulting computation terminates and yields the result R.”

Here P is a phrase of any of our three categories Aexp, Bexp, Com; σ is an
element of S; and what R is will depend on the phrase category of P . That is, the
appropriate notion of “result” will be different for each phrase category:

• The result of evaluating an arithmetic expression will be an integer, so the
corresponding instances of the evaluation relation have the form 〈a, σ〉 ⇓ n.

• The result of evaluating a boolean expression will be a truth value, so the
corresponding instances of the evaluation relation have the form 〈b, σ〉 ⇓ t.

• The result of evaluating a command will be a state (informally, the new state
after the command has been executed), so the corresponding instances of
the evaluation relation have the form 〈c, σ〉 ⇓ σ′.

Slightly more formally, our evaluation relation will be a certain subset

E ⊆ (Aexp × S× Z) t (Bexp × S× T) t (Com × S× S),

where × means product of sets and t means disjoint union. We can then regard
〈P, σ〉 ⇓ R as a more readable expression for (P, σ, R) ∈ E.

The evaluation relation is defined by means of a proof system. that is, we give
a set of semantic rules for deriving the true statements of the form 〈P, σ〉 ⇓ R. The
complete set of semantic rules for IMP is given in the accompanying Note 4.

Notice that each rule has the form

〈P1, σ1〉 ⇓ R1 · · · 〈Pk, σk〉 ⇓ Rk

〈P, σ〉 ⇓ R

with some number of premises written above the line (possibly zero!), and a
single conclusion written below the line. Some rules also involve side-conditions
written to the right of the rule — these record any restrictions on when the rule
is supposed to apply. The intended meaning of a rule of the above form is:

3

Formal Programming Language Semantics note 3 CS4/MSc/TPG 30.09.04

“If 〈P1, σ1〉 ⇓ R1 and . . . and 〈Pk, σk〉 ⇓ Rk (and any side-conditions are
also satisfied), then 〈P, σ〉 ⇓ R.”

Note that in the case k = 0, the “if” condition here is vacuous, and so in this case
the rule will simply say that 〈P, σ〉 ⇓ R.

Given this set of rules, we can plug together valid instances of them (that
is, instances that satisfy any side-conditions) to form proof trees or derivations
in an obvious way. Thus, a derivation of 〈P, σ〉 ⇓ R will be a finite tree with this
formula at the root, such that every formula in the tree follows from the formulae
immediately above it via one of the semantic rules. (Note that the leaves of such
a tree will necessarily be instances of rules with no premises — these play the
role of “axioms”.) As a simple example, below is a derivation for the execution of
the command if X<=0 then X:=0-X else skip in a state σ where σ(X) = −5.
We write σ′ for the updated state σ[X 7→ 5].

〈X, σ〉 ⇓ −5 〈0, σ〉 ⇓ 0

〈X<=0, σ〉 ⇓ true

〈0, σ〉 ⇓ 0 〈X, σ〉 ⇓ −5

〈0-X , σ〉 ⇓ 5

〈X:=0-X , σ〉 ⇓ σ′

〈if X<=0 then X:=0-X else skip , σ〉 ⇓ σ′

We may now (at long last) define the evaluation relation of IMP to be the set of
triples (P, σ, R) such that 〈P, σ〉 ⇓ R has a derivation of this kind. This completes
the definition of the operational semantics of IMP.

Note that the rules are syntax-directed — that is, each rule is associated with
a particular syntactic construct of IMP, represented by the phrase P occurring
in the conclusion of the rule; moreover, the phrases occurring in the premises
are syntactic components of P . (Indeed, they are strictly smaller than P in all
except rule (17).) This means that, given a phrase P and a state σ, we may try to
build a derivation for some 〈P, σ〉 ⇓ R (discovering what R is in the process) by a
simple depth-first search. If some such derivation exists, our search will find it
after a finite time. You will see what I mean if you try out an example by hand:

Recommended exercise. Construct a complete derivation for the execution
of the command while 1<=X do (Y:=Y*X ; X:=X-1) , starting from a state σ
in which σ(X) = 3, σ(Y) = 1.

The construction of derivations in this way by traversing the proof from left to
right in some sense simulates the execution of programs in IMP. Doing this by
hand isn’t very feasible except for tiny examples, but it does lend itself to machine
simulations: we can provide the simulator with a set of operational rules, and
instantly get a simulation of the corresponding programming language.

[Exercise: Think about what will happen when we attempt to construct a
derivation in this way for a program that doesn’t terminate.]

John Longley

4

