
Formal Programming Language Semantics note 2 CS4/MSc/TPG 08.10.03

Formal Programming Language Semantics note 2

Goals of formal semantics

Let’s now look at some of the reasons why one might want to study the formal
semantics of programming languages. Most of these points will be illustrated by
specific examples later in the course.

Standardizing language definitions. Most obviously, a formal semantics can
offer a complete, rigorous definition of a language. This can serve both as a
reference for programmers wishing to understand subtle points of the lan-
guage, and as a touchstone for implementers of the language (e.g. compiler
writers), by providing a standard against which the correctness of an im-
plementation may be judged. For a language with a large user community,
providing a robust definition is clearly a worthwhile investment of effort,
and helps to pre-empt the possibility that different implementers might in-
terpret the definition of the language differently, with the consequent pos-
sibility that a user’s program might run OK on one implementation but not
on another.

The main advantages of formal versus informal definitions here are that a
formal definition is mathematically precise and unambiguous (in practice,
informal definitions are sometimes interpreted differently by different im-
plementers), and that a formal definition is typically much more concise
than a corresponding English prose description. A possible disadvantage
is that the ideas of formal semantics are as yet not very widely known and
understood — and many programmers are frightened of anything that looks
like maths!

Proving properties about programs. A formal semantics can also provide a foun-
dation for mathematical proofs about programs. Indeed, even to be able to
formulate claims about programs as precise mathematical statements, one
has to have a precise mathematical definition of the language in question.

The mathematical statements one might wish to prove are of two kinds:
statements about the language as a whole, and statements about partic-
ular programs. As an example of the first kind, various good properties
of Standard ML can be proved mathematically from the definition: for in-
stance, the fact that type errors and null pointers can never arise at run
time. Examples of the second kind include statements asserting the correct-
ness of some program — that it does what it is supposed to do. Normally,
“correct” will mean that the program conforms to some formal specification
(as in Extended ML, for instance). Formal semantics provides not only a
framework for making precise statements of correctness, but also many of
the logical and conceptual tools needed for proving them.

1

Formal Programming Language Semantics note 2 CS4/MSc/TPG 08.10.03

The dream of being able to prove mathematically that programs are correct
— the ideal of program verification — has been talked about for several
decades now, and has been the subject of a lot of research (particularly in
Edinburgh). It is still not a practical possibility for sizeable programs, but
one can hope that it might become so in the future. Because of the size and
complexity of real-world programs (and languages), some kind of machine
assistance is essential; this means our semantics needs to be “formal” in
the strong sense.

In parts of this course we will be looking briefly at how semantics is sup-
posed to help with the problem of program verification.

Assisting in language design. The ideas of semantics can provide guidance for
language designers. Designing a good programming language, in which the
various features interact cleanly and in a principled way and unnecessary
complications are avoided, is a difficult problem, and the attempt to provide
a formal semantics can highlight unnecessary complications and suggest
simpler, cleaner definitions.

Some people think that the program verification problem will become sig-
nificantly easier if programming languages are designed to have good math-
ematical properties (ML is a step in this direction). The idea is that a pro-
gramming language designed at random will be a very complex and artificial
formal object, hence probably hard to reason about — but with the help of
denotational semantics in particular, one can design languages that may be
just as complex but are in some sense equivalent to a simple, natural math-
ematical structure; this probably means they will be relatively pleasant to
reason about. (What exactly I mean by this will hopefully become clearer by
the end of the course!)

Animation and language prototyping. If a semantics is formal in the strong
sense, it can be manipulated by a computer in various ways. For exam-
ple, there exist tools which take as input an operational semantics for a
language and “animate” it so that the user can run programs in his lan-
guage and see how they behave. This allows a language designer to ex-
periment with various semantic choices and observe what differences they
make. (I hope to make some such tool available for you to play with during
the course.) Likewise, there are tools which take an operational semantics
and automatically generate a compiler for the corresponding language.

Applications to compiler techniques. The theoretical ideas behind semantics
can actually be applied to make code run faster! For example, the ideas
of static semantics can be used to design type systems which a compiler
may use to determine that a certain code optimization is legal. As another
example, a technique known as normalization by evaluation obtains the re-
sult of a program simply by computing its value according to a denotational
semantics for the language; this is often much faster than computing the
result in the conventional way.

2

Formal Programming Language Semantics note 2 CS4/MSc/TPG 08.10.03

Operational, denotational and axiomatic semantics

In principle, any mathematical description of a programming language that cor-
rectly predicted the behaviour of programs would count as a “semantics”. But
whatever technique we use, we want to strive for clarity and simplicity in our
description, avoiding unnecessary detail as far as possible. (It is obvious in view
of the applications listed above why this is so desirable.) For this reason, an ap-
proach such as defining a language via the behaviour of some particular compiler
is to be regarded as a bad (nay, disgusting) way to do semantics.

In practice, there are three particular styles of semantics that are traditionally
considered. (We are really talking about dynamic semantics here.) Let’s consider
these in turn:

Operational semantics: Here one specifies the way in which programs run or
execute by means of symbolic rules. Or at least, we specify one possible way
in which they might execute which yields the intended behaviour — it need
not be the way they actually run in a particular implementation. Normally
we specify a kind of “idealized implementation”, going for simplicity and
clarity rather than efficiency. Nevertheless, operational definitions generally
have the feel of a description of a process involving symbol manipulation
that “happens in time”.

The are two main kinds of operational semantics:

• The abstract machine approach. Here we specify a way of implement-
ing the language on some lower-level (idealized) computing machine
(e.g. the SCM or SECD machine), or else of translating (or “compiling”)
it down to a lower-level language for which we already have an opera-
tional semantics. Approaches of this kind have the advantage that they
are close to actual implementations, but their big disadvantage is that
they tend to involve a lot of arbitrary choices and irrelevant detail.

• Structural operational semantics, introduced by Plotkin in the early
’80s. Here our symbolic rules work directly with the syntax of the lan-
guage in question, and so much of the syntactic structure of programs
is “preserved” — it is rather like giving an idealized interpreter for the
language. This is a bit more abstract and generally cleaner than the
abstract machine approach. In this course we will concentrate on this
latter kind of operational semantics.

Denotational semantics: Here one looks for a mathematical structureM which
constitutes an answer to the question “What is it that program phrases ac-
tually mean?” In very simple cases, for example, we could take the meaning
of a program to be simply a function from input-values to output-values,
in which case we might take M to be just the set of all functions of the
appropriate type.1

1Normally, M has to be something more complex than this. Much work in denotational
semantics uses various kinds of complete partial order (CPO) or domain — see later in the course.

3

Formal Programming Language Semantics note 2 CS4/MSc/TPG 08.10.03

We then define a mapping which associates to each program phrase P an
element [[P]] of M, called the meaning or denotation of P . The intended
behaviour of a program (e.g. the result it returns) can typically be read off
easily from its denotation. Almost always, we try to give a definition of [[−]]
which is compositional, in the sense that the denotation of a program is
completely determined by the denotation of its constituent subprograms;
this means that [[P]] contains all the information necessary to determine
how P will behave in any program context.

In contrast to the “dynamic” feel of operational semantics, denotational se-
mantics has a “static” feel: we are describing program behaviour in terms of
mathematical structures fixed in eternity. This means that ordinary kinds
of mathematical reasoning can be applied to denotations: we don’t have
to worry about things “happening in time”. When it works well, denota-
tional semantics offers the deepest mathematical understanding of any of
the three approaches. Much of the interest of the subject lies in the prob-
lem of trying to find a good mathematical structure M for modelling a given
programming language. (In general, for a given language many choices of
M are possible, but — as we shall see — some are definitely “better” than
others.)

Axiomatic semantics: Here one specifies the behaviour of a program indirectly,
by giving a system which says what properties programs have. Typically,
we give a program logic which allows us to generate formal proofs of such
properties; we then declare that the properties provable in the system have
to be true. Among these properties will be certain “basic” statements about
the behaviour of particular programs, so giving a program logic is enough
to give a semantics.

These three styles are not in competition, but are mutually complementary
and serve different purposes. Operational semantics is the most immediately
useful as a standard for implementers. Axiomatic semantics is the most suitable
for program verification. Denotational semantics provides a logical and concep-
tual link between operational and axiomatic semantics, and is also the best in
terms of helping us to design both programming languages and program logics
in a clean way. The best situation is to have all three kinds of semantics for
a given language, together with proofs that the they “agree” (that is, define the
same program behaviour). [Exercise: in the remaining inch or so of space, copy
down the diagram from the blackboard (this will save me typesetting it!).]

John Longley

4

