
Formal Programming Language Semantics note 16 CS4/MSc/TPG 24.11.05

Formal Programming Language Semantics note 16

More datatypes, and reasoning about programs

In this note we will consider some mild extensions of our language PCF, mainly
involved with the addition of new datatypes, and show how to give operational
and denotational semantics. We will also show how a denotational semantics
can give us a framework for proving properties of programs, and will hint at the
connection between denotational and axiomatic semantics.

Remember that a denotational semantics interprets types using mathemati-
cal objects such as CPOs, and terms as elements of these CPOs. Often the idea
behind a denotational semantics is clear as soon as we have specified the inter-
pretation of types — giving the denotation of terms is then usually just a matter
of filling in the details. From this point on we will content ourselves with explain-
ing how types are interpreted, leaving the semantics of terms as an exercise for
the tireless reader.

Termination at higher types. Before we consider any new datatypes, let us
look at a mild variant of PCF, somewhat akin to the call-by-value version con-
sidered in Note 14. First of all, notice that (for call-by-name PCF) our statement
of adequacy only says anything about terms of basic type (int or bool). This
seems reasonable because these are the only types for which values are “print-
able”, and thus provide a basic notion of “observable output” — we are not al-
lowing ourselves the ability to make direct observations on terms of higher type.
In particular, our denotational semantics doesn’t distinguish between the terms

fix (f:int->int = f)
fn x:int => fix (y:int = y)

In practice, however, in languages like Haskell or ML, one can distinguish ob-
servationally between these terms, since one can at least observe termination for
programs of higher type. If you enter something like the first term at the Haskell
prompt, the machine will go into an endless loop, but if you enter the second
term, the machine will get back to you with something like

it = - : int->int

Thus, the first term corresponds to an element of type int->int which is itself
undefined, and the second to a function which is itself defined but whose value
at every x:int is undefined.

1

Formal Programming Language Semantics note 16 CS4/MSc/TPG 24.11.05

We can capture this idea in our operational semantics by extending the defi-
nition of values to include fn -abstractions, just as we did in call-by-value PCF.
We may then say a term e of any type terminates if it evaluates to some value v
using the reduction rules.

Suppose we want our denotational semantics to correctly predict the results of
“experiments” of the above kind. We can achieve this by modifying our definition
of the interpretation of types by defining

[[σ -> τ]] = ([[σ]] ⇒ [[τ]])⊥

(the new bit here is the lifting operator ⊥). Obviously, this entails some minor
tweaking to our definition of the semantics of terms. Once this is done, the
interpretation of the first of the above terms will be the newly added bottom
element of (Z⊥ → Z⊥)⊥, whilst the interpretation of the second term will be the
everywhere-bottom function from Z⊥ to Z⊥, which is now the second-smallest
element of (Z⊥ → Z⊥)⊥.

It’s worth noting that in call-by-value PCF, termination at higher types is ob-
servable automatically: to see where e : τ terminates, we can consider a basic
type term such as (fn x:τ => 0)(e).

Product types. Supposing we wish to add product types to our original version
of PCF. We can extend the language of types thus:

τ ::= int | bool | τ0 -> τ1 | τ0 * τ1

We can also extend the language of terms by adding “pairing” and “projection”
operators with typing rules as follows:

Γ ` e : σ Γ ` e′ : τ

Γ ` (e , e′) : σ * τ

Γ ` e : σ * τ

Γ ` #1 e : σ

Γ ` e : σ * τ

Γ ` #2 e : τ

One way to give a denotational semantics of this language would be to interpret
product types using the obvious notion of “product of CPOs”:

[[σ * τ]] = [[σ]]× [[τ]]

and then to interpret pairing and projections using the evident mathematical
pairing and projection functions. This would correspond precisely to giving an
operational semantics with the following small-step reduction rules:

• #1(e , e′)→ e, and #2(e , e′)→ e′.

• If e → e′ then #1 e → #1 e′ and #2 e → #2 e′.

• If e → e′ then (e , e′′)→ (e′ , e′′) and (e′′ , e)→ (e′′ , e′).

2

Formal Programming Language Semantics note 16 CS4/MSc/TPG 24.11.05

This represents one possible choice for the semantics of products. Note in par-
ticular that in this semantics, a term such as #1(0 ,diverge) has value 0. In-
tuitively, we do not have to reduce expressions to values before pairing them,
so a pair can contain useful information even if one component is “undefined”.
Products of this kind are often called lazy products.

Many languages, however, employ strict products, in which (intuitively) a pair
is only defined if both its components are defined. In such a language, the term
#1(0 ,diverge) would go undefined. An operational semantics for this kind of
product could be given by replacing the first of the above clauses by:

• #1(v , v′)→ v, and #2(v , v′)→ v′.

Here v and v′ range over values — that is to say, integer or boolean literals, fn -
expressions, or pairs of things that are themselves values (note that this is now
an inductive definition!)

In a denotational semantics for strict products, we would expect the three
terms (0 ,diverge),(diverge , 0),(diverge ,diverge) all to denote the same
element ⊥. To give such a semantics, it is as well to be in a setting that is
sensitive to termination at all types. As for call-by-value PCF, for each type σ we
define a CPO [σ] thought of as the domain for values of type σ, and a CPO-with-
bottom [[σ]] thought of as the domain for arbitrary terms:

[int] = Z, [bool] = T, [σ -> τ] = [σ]⊥ ⇒ [τ]⊥, [σ * τ] = [σ]×[τ], [[σ]] = [σ]⊥

(Notice that the corresponding call-by-value version is obtained just by replacing
[σ]⊥ by [σ] in the interpretation of arrow types.)

As an aside, once we have product types around it is quite easy to give an
interpretation of mutually recursive function definitions. Suppose f: σ and g: τ
are ML-style functions that are defined in terms of each other (and perhaps
themselves as well). This amounts to having a pair (f,g) of type σ * τ defined in
terms of itself, so we can give the denotation of such a pair by applying the usual
fixed-point machinery to the type σ * τ . This will result in a simultaneous least
solution to the defining equations for f and g respectively.

List types. Next, let us see how to add list types to our language. We will here
consider only “strict lists”; question 3 of Exercise Sheet 3 invites you to consider
one possible version of “lazy lists” (which are potentially infinite).

Let us extend the language of types by adding the production rule

τ ::= τ0 list

and extend the language of terms by adding constants

nilτ : τ list consτ : τ -> τ list -> τ list
headτ : τ list -> τ tailτ : τ list -> τ list
isNilτ : τ list ->bool

3

Formal Programming Language Semantics note 16 CS4/MSc/TPG 24.11.05

We also extend our definition of values by stipulating: nilτ is a value, and if v, v′

are values of suitable types then consτ v v′ is a value. Thus, any value of type
τ list will be of the form

consτ v1 (consτ v2 (· · · (consτ vk nilτ) · · ·))

where k may be 0, and the vi (if there are any) are all values. We abbreviate such
a list to [v1, . . . , vk].

It is straightforward to supply a suitable set of reduction rules for this lan-
guage, e.g.:

• isNilτ nilτ → true, and isNilτ (consτ e e′) → false.

• headτ (consτ e e′) → e, and tailτ (consτ e e′) → e′.

• . . . etc. [Exercise: finish this off!]

Let us now try to design a suitable CPO for values of type τ list , assuming
we already have some suitable CPO X for values of type τ . Clearly, we can
classify lists according to their length 0, 1, 2, If v and v′ are lists of different
length, we can easily write a function which sends v to true and v′ to false; we
would therefore not expect v and v′ to be comparable via the order relation v. The
appropriate CPO will therefore consist of an infinite family of CPOs placed “side-
by-side”: one for lists of length 0, another for lists of length 1, another for lists
of length 2 and so on. There is only one list of length 0 — namely nilτ — so the
first (or rather the “zeroth”) CPO in this family will be just the one-element CPO,
which we will denote by 1. A list of length 1 just contains a single value of type τ ,
so here we expect the corresponding CPO to be (isomorphic to) X itself. A list of
length 2 is effectively a pair of values of type τ , so we expect the corresponding
CPO to be essentially X ×X, and so on. We may therefore define the CPO of lists
over X as:

List(X) = 1 + X + (X ×X) + (X ×X ×X) + · · ·

Here we use “+” for the evident operation of putting CPOs side by side (actually
we are using an infinitary version of this operation). It is an easy exercise to give
a rigorous definition of this operation. We may now complete our semantics of
types by defining [τ list] = List([τ]).

There is another way to look at this CPO of lists. Intuitively, by appealing to
an “infinite distributivity law”, one can recast the above definition as

List(X) ∼= 1 + X × (1 + X × (1 + X × · · · · · ·))

(This may look like an appeal to dark magic. In fact it can be made perfectly
rigorous, but we will not do so here.) This recasting makes it clear that

List(X) ∼= 1 + X × List(X)

4

Formal Programming Language Semantics note 16 CS4/MSc/TPG 24.11.05

This is not at first sight a definition of the CPO List(X), but rather a property
that we would expect it to satisfy. This is rather reminiscent of the situation
when we first tried to define the semantics of while loops (see Note 10). In that
situation, as we have seen, we were able to interpret such properties as genuine
definitions by invoking the existence of least fixed points. The difference is that
there we were trying to specify an element of a given CPO by means of a circular
definition, whereas here we are trying to give a circular definition of a CPO itself.

In fact, with a bit more mathematical theory, we can get the theory of fixed
points to work here as well, and in fact we can define the CPO List(X) as the
“smallest” solution to the above equation. Roughly speaking, we do this by
showing that the class of all CPOs is itself something like a gigantic CPO (whose
elements are ordinary CPOs), and that therefore any operation on CPOs that we
can write down (such as the operation that maps a CPO Y to 1 + X × Y) has a
“least fixed point”.

In programming language terms, the upshot of all this is that we can interpret
recursive definitions at the level of types as well as of terms. Just as the ordinary
theory of fixed points allows us to make sense of ML-style recursive definitions
such as

fun f 0 = 1 | f n = n * f (n-1)

so the theory of fixed points on the class of all CPOs allows us to make sense of
recursive type declarations such as

datatype ’a list = nil | cons of ’a * ’a list

(which is how one could define the type of lists if it were not already predefined).
The same theory allows us to interpret many other recursive datatypes beloved
of functional programmers, such as (labelled or unlabelled) trees, lazy lists, lazy
trees and so on.

With these ideas in place, we now have essentially enough to give a denota-
tional semantics for a fairly respectable functional programming language (such
as the “pure functional” fragment of ML).

John Longley

5

