
Formal Programming Language Semantics note 10 CS4/MSc/TPG 05.11.02

Formal Programming Language Semantics note 10

Introduction to denotational semantics

We now turn our attention to denotational descriptions of the semantics of pro-
gramming languages. We will start by considering the our old friend IMP.

Meanings for program phrases. The idea of denotational semantics is to as-
sign a “meaning” to each program (or bit of program) in the language, which
encapsulates all the information we need to determine how the program will be-
have in any context. The meaning of a whole program will depend in a systematic
way on the meaning of its various parts.

For example, in operational semantics we have considered relations such as

〈e, σ〉 ⇓ v,

which says that the expression e, in the particular state σ, will evaluate to the
value v. Of course, different states σ will give different values v here. So we might
say that the meaning of the expression e is encapsulated by a certain function

[[ e ]] : States −→ Values.

The above relation can then be rephrased as

[[ e ]](σ) = v.

Likewise, the meaning of a command c could be captured by a partial function

[[ c ]] : States —–⇀ States.

(It had better be a partial function, because there are non-terminating com-
mands. The “harpoon” symbol here is used for partial functions.)

We will refer to [[ e ]] and [[ c ]] here as the meanings or denotations of e and c.
There isn’t really a single God-given notion of what “meaning” means for pro-
gramming languages, so the denotational meaning of programs — the definition
of the operation [[− ]] — is something we have to choose for ourselves. This
means that there may well be more than one denotational semantics for a given
language. (We will see some other kinds later.)

A denotational semantics of IMP. Let us be more precise about the definition
of our denotational semantics. We have already the set S of possible states for
IMP, so in accordance with the above intuition, let us define sets Du for each

1



Formal Programming Language Semantics note 10 CS4/MSc/TPG 05.11.02

phrase category u as follows. We will write A −→ B here for the set of all (total)
functions from A to B, and A —–⇀ B for the set of all partial functions.

DAexp = S −→ Z,
DBexp = S −→ T,
DCom = S —–⇀ S.

The idea is that these sets serve as our “universes of meanings” or semantic
domains: if P is a phrase of syntactic category u, then [[ P ]] will be an element of
the domain Du.

We now define the denotations [[ P ]] themselves. The important point is that
the definition of [[− ]] is compositional: it is given by induction on the syntactic
structure of phrases, and the meaning of a phrase is determined by the meaning
of its immediate subphrases. We will use the notation Λσ. · · · to mean “the (total
or partial) function that maps σ to · · · ”, so that “f = Λσ. · · · ” amounts to the same
as saying “for all σ ∈ S, f(σ) = · · · ”. The convention is that if the value of the
mathematical expression represented by · · · is undefined for a particular σ, then
the partial function Λσ. · · · is undefined on this σ.

The clauses for arithmetic and boolean expressions are obvious enough, and
closely parallel the evaluation rules of Note 4. (We number the semantic clauses
in a manner consistent with Note 4.)

For Aexp: (1) [[ n ]] = Λσ. n
(2) [[ X ]] = Λσ. σ(X)
(3) [[ a0 - a1 ]] = Λσ. [[ a0 ]](σ)− [[ a1 ]](σ)
(4) [[ a0 * a1 ]] = Λσ. [[ a0 ]](σ)× [[ a1 ]](σ)

For Bexp: (5) [[ t ]] = Λσ. t

(6/7) [[ a0 = a1 ]] = Λσ.

{
true if [[ a0 ]](σ) = [[ a1 ]](σ)
false if [[ a0 ]](σ) 6= [[ a1 ]](σ)

(8/9) [[ a0 <= a1 ]] = Λσ.

{
true if [[ a0 ]](σ) ≤ [[ a1 ]](σ)
false if [[ a0 ]](σ) > [[ a1 ]](σ)

(10) [[ not b ]] = Λσ. ¬([[ b ]](σ))
(11/12) [[ b0 and b1 ]] = Λσ. And ([[ b0 ]](σ), [[ b1 ]](σ))

Clearly these clauses define total functions S → Z or S → T as required.

The clauses for commands are a bit more interesting. The denotation of a
command is essentially the transformation on states that is induced by executing
the command. First, skip does nothing to the state, so its denotation is the
identity function:

(13) [[ skip ]] = Λσ. σ

The denotation of an assignment is the function that updates the state in the
obvious way. This clause shows that the denotations of commands can depend
on the denotations of expressions.

(14) [[ X := a ]] = Λσ. σ[X 7→ [[ a ]](σ)]

2



Formal Programming Language Semantics note 10 CS4/MSc/TPG 05.11.02

Sequencing of commands is interpreted by composition of state transformations:

(15) [[ c0 ; c1 ]] = Λσ. [[ c1 ]]([[ c0 ]](σ)) (= [[ c1 ]] ◦ [[ c0 ]])

The interpretation of if statements is fairly obvious:

(16/17) [[ if b then c0 else c1 ]] = Λσ.

{
[[ c0 ]](σ) if [[ b ]](σ) = true
[[ c1 ]](σ) if [[ b ]](σ) = false

All of the above clauses are in some sense just repackagings of the corre-
sponding operational rules, so you may be wondering what all the fuss is about.
However, we have saved the best clause till last: the clause for while . This in-
volves an important new idea — that of least fixed points — and it is here that the
real difference between operational and denotational semantics starts to emerge.

Denotations of while commands. Suppose that [[ b ]] and [[ c ]] have already been
defined. Our goal is to define a function h = [[ while b do c ]]. As a first attempt,
we might try a straightforward adaptation of the operational rules (18) and (19),
in the spirit of the clauses above. This might lead us to try something like:

h = Λσ.

{
h([[ c ]](σ)) if [[ b ]](σ) = true
σ if [[ b ]](σ) = false.

However, this is not a definition by itself, since it “defines” h in terms of itself.
Rather, it is a property which we would expect h to possess if we have defined it
correctly. So in order to define h, let us try a slightly different approach.

We cannot directly define the semantics of while commands, so instead let
us approach the problem by introducing into our language an infinite sequence
of auxiliary constructs while 0, while 1, while 2, . . . whose meaning we can define,
and which provide successively approximations to the original while .

The idea is that while k will behave like while for up to k loop iterations, but
after that it will simply diverge and not yield a final state. The construct while 0

will be dreadful: by definition, commands of the form while 0 b do c will always
diverge! We may capture this operationally simply by giving no evaluation rules
for while 0, so that it will be impossible to derive any assertions of the form

The remaining constructs are defined inductively: given while k, we define
while k+1 to be a construct which is able to do one more loop iteration than
while k. More specifically, the effect of while k+1 b do c will be to evaluate b, quit
the loop if the result is false, otherwise execute c and then perform while k b do c.
We may give operational rules for this as follows:

〈b, σ〉 ⇓ false
〈while k+1 b do c, σ〉 ⇓ σ

〈b, σ〉 ⇓ true 〈c, σ〉 ⇓ σ′ 〈while k b do c, σ′〉 ⇓ σ′′

〈while k+1 b do c, σ〉 ⇓ σ′′

Let us write W for the command while b do c, and Wk for while k b do c. Notice
the following two important facts:

3



Formal Programming Language Semantics note 10 CS4/MSc/TPG 05.11.02

• If 〈Wk, σ〉 ⇓ σ′ then 〈Wk+1, σ〉 ⇓ σ′ (and indeed 〈W, σ〉 ⇓ σ′). In other words,
each approximation to W is at least as good as the previous one.

• If 〈W, σ〉 ⇓ σ′ then 〈Wk, σ〉 ⇓ σ′ must hold for some large enough k, since
the execution of W in state σ must quit the loop after some finite number
of iterations. (Note that k may depend on σ — there will not usually be a
single k which works uniformly for all σ).

Let us now turn to the denotational semantics. We are going to creep up on
the sought-after denotation h = [[ W ]] by defining denotations hk for each Wk. It is
clear what the denotation of W0 ought to be: since W0 always diverges, we take
h0 to be the empty or everywhere undefined partial function ⊥ : S ⇀ S. And given
hk, it is apparent from the above operational rules that we ought to define

hk+1 = Λσ.

{
hk([[ c ]](σ)) if [[ b ]](σ) = true
σ if [[ b ]](σ) = false.

Let us write ⊆ for the inclusion ordering on partial functions S ⇀ S: f ⊆ g if
whenever f(x) is defined, so is g(x) and they are equal. Clearly h0 ⊆ h1, since
h0 is the smallest partial function; and from the above equation it follows (by
induction) that hk ⊆ hk+1 for all k. So we have an increasing chain of partial
functions h0 ⊆ h1 ⊆ h2 ⊆ · · ·.

Now, from the observations above we see that 〈W, σ〉 ⇓ σ′ if and only if some
〈Wk, σ〉 ⇓ σ′. This suggests that we should define h so that h(σ) = σ′ if and only if
some hk(σ) = σ′. In other words, we let h be the union of the partial functions hk:

[[ while b do c ]] = h =
⋃
k≥0

hk

This completes the definition of the denotational semantics of IMPb.

Extending to IMPe, IMPs, IMPb. One can also give denotational semantics for
IMPe and IMPs via a straightforward adaptation of the above definitions, by mod-
ifying our semantic domains so as to take account of exceptions and side-effects.
We leave the details to the avid reader.

A more substantial modification is needed for IMPb, since here the notion of
state varies according to the set of identifiers in scope. We therefore have to treat
many of the above notions as defined relative to a given static environment Γ. Let
us first define [[ int ]] = Z and [[ bool ]] = T. If Γ = [(X1, u1, d1), . . . , (Xr, ur, dr)], we
may define the set SΓ of states for Γ to be the set of all lists [(X1, v1), . . . , (Xr, vr)]
where vi ∈ [[ ui ]] for each i. (Note that SΓ is isomorphic to [[ u1 ]] × · · · × [[ ui ]].) We
next define semantic domains Du

Γ (for u = Aexp, Bexp, Com) as before, but using
SΓ instead of S. Finally, if P is a well-typed phrase of type u in environment Γ
(that is, Γ ` P : u), we define its denotation [[ P ]]Γ to be a certain element of Du

Γ.
(It is typical of most denotational interpretations that one defines the meaning of
terms relative to some environment.) The definition of [[ P ]]Γ is given by induction
on the structure of P — or more accurately, by induction on the typing derivation
of Γ ` P : u. Again, the reader may enjoy working out the details.

4


