WARNING: this isn’t the same course it was in 2015 and before

When revising for the exam, past exam papers are useful, but be careful of overfitting.

• Most topics in common with last year
• The changed a lot in 2016
• Different topics; some new approaches/models

Topics in common with previous years

• Corpora, annotation, evaluation
• Ambiguity at all levels
• N-gram models, entropy, smoothing
• Noisy channel framework
• Spelling correction, edit distance
• HMMs, part-of-speech tagging
• Syntax, parsing algorithms, PCFGs, other grammar formalisms
• Lexical semantics: word senses

Eliminated from previous years

You will not be expected to answer questions about these topics.

• corpus markup
• mathematical details of backoff in N-gram models
• details of forward-backward algorithm for HMMs
• feature structure grammars
• crowdsourcing in detail
• implementation details of Good-Turing smoothing
• pronoun resolution
• discourse coherence
New since 2015
So past papers are not a good guide for these!

- Updated discussion of evaluation
- High-level overview of more modern smoothing methods (K-N)
- More complete example of spelling correction (end-to-end system)
- Generalized discussion of EM (showing application in both spelling correction and HMMs)
- Text classification (tasks and methods)
- Dependency grammar and related algorithms
- Semantic roles and distributional semantics
- Machine Translation (non-examinable this year; has been on some past papers).

Format of the exam
As in previous years, the exam has two parts:

- Part A: 8 short-answer questions, each worth 3 marks (total of 24 marks).
- Part B: 3 longer questions worth 13 marks each, of which you must answer two (total of 26 marks).
 - Be clear which questions you are answering.
 - If you (start to) answer more than two, you must clearly cross out one answer.

What counts and what doesn’t
Things that do matter (not necessarily a complete list):

- Complete answer (double check you’ve answered everything that was asked!)
- Clear explanations/reasoning where appropriate
- Correct equations, all variables defined
- Legible

What counts and what doesn’t
Things that do not matter:

- Perfect spelling/grammar/handwriting: as long as it is clear what you mean. Do not waste time writing drafts/copying over, but clearly cross out any scratch work that should not be marked. You can lose marks for have both correct and incorrect answers unless one is crossed out.
- Full sentences. If a word or short phrase conveys the meaning, no need for more.
Other ways to prepare

- Lecture summary slides are a good place to start: they don’t have all the details, but make sure you understand the details underlying the main points mentioned.
- Do the labs! Make sure you understand the answers you get.
- Heed any feedback on your courseworks and talk to your classmates or post on Piazza if you still don’t understand.
- Post questions on Piazza. We will not always answer immediately but will try to ensure questions are answered. **Exception:** we will not answer any questions asked less than 48 hours before the exam.

What courses follow on next year?

- IAML: if you haven’t already taken it, do! ML underlies most of NLP, and fourth year courses assume a strong background.
- Natural Language Understanding: more advanced models and algorithms for processing syntax, semantics, and discourse.
- Topics in NLP: covers some more advanced general techniques followed by student presentations based on current research papers.
- Machine Translation: will be a 20 point coursework-only course focusing on implementation of models and algorithms, plus looking at where they fail (i.e. linguistic issues).
- Automatic Speech Recognition: builds on knowledge from this course, but focuses on speech processing.

Other related courses

- Other machine learning courses (MLPR, MLP, PMR): These cover modern statistical approaches and deep learning models that are increasingly popular in NLP.
- Extreme computing: for dealing with huge data sets.
- Computational Cognitive Science, Topics in Cognitive Modeling: include sections on computational models of human language processing.

That’s all folks!