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Today we will. . .

• Provide metrics for evaluating a parser

• Return to the problem of PCFGs

• Suggest a fix

• This fix leads to an approach without constituent structure!

Dependency parsing
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Evaluating parse accuracy

Compare gold standard tree (left) to parser output (right):
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• Output constituent is counted correct if there is a gold constituent that spans
the same sentence positions.

• Harsher measure: also require the constituent labels to match.

• Pre-terminals (lexical categories) don’t count as constituents.
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Evaluating parse accuracy

Compare gold standard tree (left) to parser output (right):
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• Precision: (# correct constituents)/(# in parser output) = 3/5

• Recall: (# correct constituents)/(# in gold standard) = 3/4

• F-score: balances precision/recall: 2pr/(p+r)
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Parsing accuracies

F-scores for parsing on WSJ corpus:

• vanilla PCFG: < 80%1

• lexicalizing + cat-splitting: 89.5% (Charniak, 2000)

• Best current parsers get about 92%

• Numbers get better if we look at top 5 or top 10

However, results on other corpora and other languages are considerably lower.
Definitely not a solved problem!

1Charniak (1996) reports 81% but using gold POS tags as input.
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Summary

• Probabilistic models of syntax can help disambiguation and speed in broad-
coverage parsing.

– by computing the probabilities of each tree or sub-tree as the product of the
rules in it, and choosing the best option(s).

• Treebanks provide training data for estimating rule probabilities.

• However, to do well, we need to be clever:

– Standard categories in the treebank don’t capture some important facts
about language.

– By creating more detailed categories, we can encode more information within
the PCFG framework.
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Recall Problem with Vanilla PCFGs
No lexical dependencies

Replacing one word with another with the same POS will never result in a different
parsing decision, even though it should!

• kids saw birds with fish vs.
kids saw birds with binoculars

• She stood by the door covered in tears vs.
She stood by the door covered in ivy

• stray cats and dogs vs.
Siamese cats and dogs
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A way to fix PCFGs: lexicalization
Create new categories, this time by adding the lexical head of the phrase (note:

N level under NPs not shown for brevity):
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• Now consider:
VP-saw→ VP-saw PP-fish vs. VP-saw→ VP-saw PP-binoculars
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Practical issues

• Identifying the head of every rule is not always straightforward

– (more on this below)

• All this category-splitting makes the grammar much more specific (good!)

• But leads to huge grammar blowup and very sparse data (bad!)

• Lots of effort on how to balance these two issues.

– Complex smoothing schemes (similar to N-gram interpolation/backoff).
– More recently, increasing emphasis on automatically learned subcategories.

• But do we really need phrase structure in the first place? Not always!

• Today: Syntax (and parsing) without constituent structure.
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Outline

1. Dependencies: what/why

2. Transforming constituency → dependency parse

3. Direct dependency parsing

• Transition-based (shift-reduce)
• Graph-based
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Lexicalized Constituency Parse
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. . . remove the phrasal categories. . .
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. . . remove the (duplicated) terminals. . .
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. . . and collapse chains of duplicates. . .
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. . . and collapse chains of duplicates. . .
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. . . and collapse chains of duplicates. . .
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. . . and collapse chains of duplicates. . .
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. . . and collapse chains of duplicates. . .
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Dependency Parse
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Linguists have long observed that the meanings of words within a sentence depend
on one another, mostly in asymmetric, binary relations.

• Though some constructions don’t cleanly fit this pattern: e.g., coordination,
relative clauses.
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Dependency Parse
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Equivalently, but showing word order (head → modifier):

kids saw birds with fish

Because it is a tree, every word has exactly one parent.
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Why dependencies??

Consider these sentences. Two ways to say the same thing:
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• We only need a few phrase structure rules:

S→ NP VP

VP→ V NP NP

VP→ V NP PP

plus rules for NP and PP.
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Equivalent sentences in Russian

• Russian uses morphology to mark relations between words:

– knigu means book (kniga) as a direct object.
– devochke means girl (devochka) as indirect object (to the girl).

• So we can have the same word orders as English:

– Sasha dal devochke knigu
– Sasha dal knigu devochke

Shay Cohen FNLP Lecture 13 22



Equivalent sentences in Russian

• Russian uses morphology to mark relations between words:

– knigu means book (kniga) as a direct object.
– devochke means girl (devochka) as indirect object (to the girl).

• So we can have the same word orders as English:

– Sasha dal devochke knigu
– Sasha dal knigu devochke

• But also many others!

– Sasha devochke dal knigu
– Devochke dal Sasha knigu
– Knigu dal Sasha devochke
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Phrase structure vs dependencies

• In languages with free word order, phrase structure (constituency) grammars
don’t make as much sense.

– E.g., we would need both S→ NP VP and S→ VP NP, etc. Not very
informative about what’s really going on.

Shay Cohen FNLP Lecture 13 24



Phrase structure vs dependencies

• In languages with free word order, phrase structure (constituency) grammars
don’t make as much sense.

– E.g., we would need both S→ NP VP and S→ VP NP, etc. Not very
informative about what’s really going on.

• In contrast, the dependency relations stay constant:

Sasha dal devochke knigu

ROOT

NSUBJ IOBJ

DOBJ

Sasha dal knigu devochke

ROOT

NSUBJ

IOBJ

DOBJ
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Phrase structure vs dependencies

• Even more obvious if we just look at the trees without word order:
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Pros and cons

• Sensible framework for free word order languages.

• Identifies syntactic relations directly. (using CFG, how would you identify the
subject of a sentence?)

• Dependency pairs/chains can make good features in classifiers, for information
extraction, etc.

• Parsers can be very fast (coming up...)

But

• The assumption of asymmetric binary relations isn’t always right... e.g., how
to parse dogs and cats?
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Edge Labels

It is often useful to distinguish different kinds of head → modifier relations, by
labeling edges:

kids saw birds with fish

ROOT

SBJ DOBJ

POBJ

PREP

Important relations for English include subject, direct object, determiner, adjective
modifier, adverbial modifier, etc. (Different treebanks use somewhat different
label sets.)

• How would you identify the subject in a constituency parse?
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Dependency Paths

For information extraction tasks involving real-world relationships between
entities, chains of dependencies can provide good features:

British officials in Tehran have been meeting with their Iranian counterparts

amod

nsubj

prep pobj

aux

aux prep

pobj

poss

amod

(example from Brendan O’Connor)
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Projectivity

• A sentence’s dependency parse is said to be projective if every subtree (node
and all its descendants) occupies a contiguous span of the sentence.

• = The dependency parse can be drawn on top of the sentence without any
crossing edges.

A hearing on the issue is scheduled today

ROOT

ATT ATT
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VC TMP

PC

ATT
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Nonprojectivity

• Other sentences are nonprojective:

A hearing is scheduled on the issue today

ROOT

ATT

ATT

SBJ VC

TMP

PC

ATT

• Nonprojectivity is rare in English, but quite common in many languages.
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Outline

1. Dependencies: what/why

2. Transforming constituency → dependency parse

3. Direct dependency parsing

• Transition-based (shift-reduce)
• Graph-based
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Constituency Tree → Dependency Tree
We saw how the lexical head of the phrase can be used to collapse down to a
dependency tree:
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• But how can we find each phrase’s head in the first place?
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Head Rules
The standard solution is to use head rules: for every non-unary (P)CFG
production, designate one RHS nonterminal as containing the head. S→ NP VP,
VP→ VP PP, PP→ P NP, etc.
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• Heuristics to scale this to large grammars: e.g., within an NP, last immediate
N child is the head.
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Head Rules
Then, propagate heads up the tree:
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Head Rules
Then, propagate heads up the tree:
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Head Rules
Then, propagate heads up the tree:
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Head Rules
Then, propagate heads up the tree:
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Head Rules
Then, propagate heads up the tree:
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Outline

1. Dependencies: what/why

2. Transforming constituency → dependency parse

3. Direct dependency parsing

• Transition-based (shift-reduce)
• Graph-based
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Dependency Parsing

Some of the algorithms you have seen for PCFGs can be adapted to dependency
parsing.

• CKY can be adapted, though efficiency is a concern: obvious approach is
O(Gn5); Eisner algorithm brings it down to O(Gn3)

– N. Smith’s slides explaining the Eisner algorithm: http://courses.cs.

washington.edu/courses/cse517/16wi/slides/an-dep-slides.pdf

• Shift-reduce: more efficient, doesn’t even require a grammar!
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Transitation-based Parsing: Shift Reduce Parser

3 possible actions:
LeftArc: Assign head-dependent relation between s1 and s2; pop s2

RightArc: Assign head-dependent relation between s2 and s1; pop s1
Shift: Put w1 on top of the stack.

Remember, dependency relation points from head to dependent
Both LeftArc and RightArc pop the dependent, leaving the head at the top of
the stack
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Example

Step Stack Word List Action Relations

0 [root] [Kim,saw,Sandy]
1 [root,Kim] [saw,Sandy] Shift
2 [root,Kim,saw] [Sandy] Shift
3 [root,saw] [Sandy] LeftArc nsubj(saw,Kim)
4 [root,saw,Sandy] [] Shift
5 [root,saw] [] RightArc dobj(saw,Sandy)
6 [root] [] RightArc root→saw

Kim saw Sandy

ROOT

NSUBJ DOBJ
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Transition-based Parsing

• Latent structure is just edges between words. Train a classifier as the
oracle to predict next action (Shift, LeftArc, or RightArc), and proceed
left-to-right through the sentence. O(n) time complexity!

• Only finds projective trees (without special extensions)

• Pioneering system: Nivre’s MaltParser

• See http://spark-public.s3.amazonaws.com/nlp/slides/Parsing-Dependency.
pdf (Jurafsky & Manning Coursera slides) for details and examples
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Graph-based Parsing

• Global algorithm: From the fully connected directed graph of all possible edges,
choose the best ones that form a tree.

• Edge-factored models: Classifier assigns a nonnegative score to each possible
edge; maximum spanning tree algorithm finds the spanning tree with highest
total score in O(n2) time.

– Edge-factored assumption can be relaxed (higher-order models score larger
units; more expensive).

– Unlabeled parse → edge-labeling classifier (pipeline).

• Pioneering work: McDonald’s MSTParser

• Can be formulated as constraint-satisfaction with integer linear programming
(Martins’s TurboParser)
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Graph-based vs. Transition-based
vs. Conversion-based

• TB: Features in scoring function can look at any part of the stack; no optimality
guarantees for search; linear-time; (classically) projective only

• GB: Features in scoring function limited by factorization; optimal search within
that model; quadratic-time; no projectivity constraint

• CB: In terms of accuracy, sometimes best to first constituency-parse, then
convert to dependencies (e.g., Stanford Parser).

– Slower than direct methods.
– And, you need a grammar and head rules.
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Choosing a Parser: Criteria

• Target representation: constituency or dependency?

• Efficiency? In practice, both runtime and memory use.

• Incrementality: parse the whole sentence at once, or obtain partial left-to-right
analyses/expectations?

• Retrainable system?
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Summary

• While constituency parses give hierarchically nested phrases, dependency parses
represent syntax with trees whose edges connect words in the sentence. (No
abstract phrase categories like NP.) Edges often labeled with relations like
subject.

• Head rules govern how a lexicalized constituency grammar can be extracted
from a treebank, and how a constituency parse can be coverted to a dependency
parse.

• For English, it is often fastest and most convenient to parse directly to
dependencies. Two main paradigms, graph-based and transition-based, with
different kinds of models and search algorithms.
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