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Today we will. . .

• Provide metrics for evaluating a parser

• Return to the problem of PCFGs

• Suggest a fix

• This fix leads to an approach without constituent structure!

Dependency parsing
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Evaluating parse accuracy

Compare gold standard tree (left) to parser output (right):
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• Output constituent is counted correct if there is a gold constituent that spans
the same sentence positions.

• Harsher measure: also require the constituent labels to match.

• Pre-terminals (lexical categories) don’t count as constituents.
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Evaluating parse accuracy

Compare gold standard tree (left) to parser output (right):
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• Precision: (# correct constituents)/(# in parser output) = 3/5

• Recall: (# correct constituents)/(# in gold standard) = 3/4

• F-score: balances precision/recall: 2pr/(p+r)
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Parsing accuracies

F-scores for parsing on WSJ corpus:

• vanilla PCFG: < 80%1

• lexicalizing + cat-splitting: 89.5% (Charniak, 2000)

• Best current parsers get about 92%

• Numbers get better if we look at top 5 or top 10

However, results on other corpora and other languages are considerably lower.
Definitely not a solved problem!

1Charniak (1996) reports 81% but using gold POS tags as input.
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Summary

• Probabilistic models of syntax can help disambiguation and speed in broad-
coverage parsing.

– by computing the probabilities of each tree or sub-tree as the product of the
rules in it, and choosing the best option(s).

• Treebanks provide training data for estimating rule probabilities.

• However, to do well, we need to be clever:

– Standard categories in the treebank don’t capture some important facts
about language.

– By creating more detailed categories, we can encode more information within
the PCFG framework.
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Recall Problem with Vanilla PCFGs
No lexical dependencies

Replacing one word with another with the same POS will never result in a different
parsing decision, even though it should!

• kids saw birds with fish vs.
kids saw birds with binoculars

• She stood by the door covered in tears vs.
She stood by the door covered in ivy

• stray cats and dogs vs.
Siamese cats and dogs
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A way to fix PCFGs: lexicalization
Create new categories, this time by adding the lexical head of the phrase (note:

N level under NPs not shown for brevity):
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• Now consider:
VP-saw→ VP-saw PP-fish vs. VP-saw→ VP-saw PP-binoculars
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Practical issues

• Identifying the head of every rule is not always straightforward

– (more on this below)

• All this category-splitting makes the grammar much more specific (good!)

• But leads to huge grammar blowup and very sparse data (bad!)

• Lots of effort on how to balance these two issues.

– Complex smoothing schemes (similar to N-gram interpolation/backoff).
– More recently, increasing emphasis on automatically learned subcategories.

• But do we really need phrase structure in the first place? Not always!

• Today: Syntax (and parsing) without constituent structure.
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Outline

1. Dependencies: what/why

2. Transforming constituency → dependency parse

3. Direct dependency parsing

• Transition-based (shift-reduce)
• Graph-based
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Lexicalized Constituency Parse
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. . . remove the phrasal categories. . .
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. . . remove the (duplicated) terminals. . .
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. . . and collapse chains of duplicates. . .
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. . . and collapse chains of duplicates. . .
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. . . and collapse chains of duplicates. . .
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. . . and collapse chains of duplicates. . .
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. . . and collapse chains of duplicates. . .
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. . . and collapse chains of duplicates. . .
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Dependency Parse
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Linguists have long observed that the meanings of words within a sentence depend
on one another, mostly in asymmetric, binary relations.

• Though some constructions don’t cleanly fit this pattern: e.g., coordination,
relative clauses.
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Dependency Parse
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Equivalently, but showing word order (head → modifier):

kids saw birds with fish

Because it is a tree, every word has exactly one parent.
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Edge Labels

It is often useful to distinguish different kinds of head → modifier relations, by
labeling edges:

kids saw birds with fish

ROOT

SBJ DOBJ

POBJ

PREP

Important relations for English include subject, direct object, determiner, adjective
modifier, adverbial modifier, etc. (Different treebanks use somewhat different
label sets.)

• How would you identify the subject in a constituency parse?
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Dependency Paths

For information extraction tasks involving real-world relationships between
entities, chains of dependencies can provide good features:

British officials in Tehran have been meeting with their Iranian counterparts

amod

nsubj

prep pobj

aux

aux prep

pobj

poss

amod

(example from Brendan O’Connor)
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Projectivity

• A sentence’s dependency parse is said to be projective if every subtree (node
and all its descendants) occupies a contiguous span of the sentence.

• = The dependency parse can be drawn on top of the sentence without any
crossing edges.

A hearing on the issue is scheduled today

ROOT

ATT ATT

SBJ

VC TMP

PC

ATT
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Nonprojectivity

• Other sentences are nonprojective:

A hearing is scheduled on the issue today

ROOT

ATT

ATT

SBJ VC

TMP

PC

ATT

• Nonprojectivity is rare in English, but quite common in many languages.
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Outline

1. Dependencies: what/why

2. Transforming constituency → dependency parse

3. Direct dependency parsing

• Transition-based (shift-reduce)
• Graph-based
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Constituency Tree → Dependency Tree
We saw how the lexical head of the phrase can be used to collapse down to a
dependency tree:
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• But how can we find each phrase’s head in the first place?

Shay Cohen FNLP Lecture 13 26

Head Rules
The standard solution is to use head rules: for every non-unary (P)CFG
production, designate one RHS nonterminal as containing the head. S→ NP VP,
VP→ VP PP, PP→ P NP, etc.
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• Heuristics to scale this to large grammars: e.g., within an NP, last immediate
N child is the head.
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Head Rules
Then, propagate heads up the tree:
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Head Rules
Then, propagate heads up the tree:
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Head Rules
Then, propagate heads up the tree:
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Head Rules
Then, propagate heads up the tree:
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Head Rules
Then, propagate heads up the tree:
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Outline

1. Dependencies: what/why

2. Transforming constituency → dependency parse

3. Direct dependency parsing

• Transition-based (shift-reduce)
• Graph-based
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Dependency Parsing

Some of the algorithms you have seen for PCFGs can be adapted to dependency
parsing.

• CKY can be adapted, though efficiency is a concern: obvious approach is
O(Gn5); Eisner algorithm brings it down to O(Gn3)

– N. Smith’s slides explaining the Eisner algorithm: http://courses.cs.

washington.edu/courses/cse517/16wi/slides/an-dep-slides.pdf

• Shift-reduce: more efficient, doesn’t even require a grammar!
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Transitation-based Parsing: Shift Reduce Parser

3 possible actions:
LeftArc: Assign head-dependent relation between s1 and s2; pop s2

RightArc: Assign head-dependent relation between s2 and s1; pop s1
Shift: Put w1 on top of the stack.

Remember, dependency relation points from head to dependent
Both LeftArc and RightArc pop the dependent, leaving the head at the top of
the stack
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Example

Step Stack Word List Action Relations

0 [root] [Kim,saw,Sandy]
1 [root,Kim] [saw,Sandy] Shift
2 [root,Kim,saw] [Sandy] Shift
3 [root,saw] [Sandy] LeftArc nsubj(saw,Kim)
4 [root,saw,Sandy] [] Shift
5 [root,saw] [] RightArc dobj(saw,Sandy)
6 [root] [] RightArc root→saw

Kim saw Sandy

ROOT

NSUBJ DOBJ
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Transition-based Parsing

• Latent structure is just edges between words. Train a classifier as the
oracle to predict next action (Shift, LeftArc, or RightArc), and proceed
left-to-right through the sentence. O(n) time complexity!

• Only finds projective trees (without special extensions)

• Pioneering system: Nivre’s MaltParser

• See http://spark-public.s3.amazonaws.com/nlp/slides/Parsing-Dependency.
pdf (Jurafsky & Manning Coursera slides) for details and examples
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Graph-based Parsing

• Global algorithm: From the fully connected directed graph of all possible edges,
choose the best ones that form a tree.

• Edge-factored models: Classifier assigns a nonnegative score to each possible
edge; maximum spanning tree algorithm finds the spanning tree with highest
total score in O(n2) time.

– Edge-factored assumption can be relaxed (higher-order models score larger
units; more expensive).

– Unlabeled parse → edge-labeling classifier (pipeline).

• Pioneering work: McDonald’s MSTParser

• Can be formulated as constraint-satisfaction with integer linear programming
(Martins’s TurboParser)

Shay Cohen FNLP Lecture 13 38

Graph-based vs. Transition-based
vs. Conversion-based

• TB: Features in scoring function can look at any part of the stack; no optimality
guarantees for search; linear-time; (classically) projective only

• GB: Features in scoring function limited by factorization; optimal search within
that model; quadratic-time; no projectivity constraint

• CB: In terms of accuracy, sometimes best to first constituency-parse, then
convert to dependencies (e.g., Stanford Parser).

– Slower than direct methods.
– And, you need a grammar and head rules.
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Choosing a Parser: Criteria

• Target representation: constituency or dependency?

• Efficiency? In practice, both runtime and memory use.

• Incrementality: parse the whole sentence at once, or obtain partial left-to-right
analyses/expectations?

• Retrainable system?
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Choosing a Parser: Performance

SOTA for English constituency parsing (WSJ §23): 91%–92% F1

4.4 Recovery of Unary Nodes
The last stage is to recover the unary nodes. Given
a unaryless c-tree as input, we predict unaries by
running independent classifiers at each node in the
tree (a simple unstructured task). Each class is
either NULL (in which case no unary node is ap-
pended to the current node) or a concatenation of
unary node labels (e.g., S->ADJP for a node JJ).
We obtained 64 classes by processing the training
sections of the PTB, the fraction of unary nodes
being about 11% of the total number of nodes. To
reduce complexity, for each node symbol we only
consider classes that have been observed with that
symbol in the training data. In PTB §22, this yields
an average of 9.9 candidates per node occurrence.

The classifiers are trained on the original c-
treebank, stripping off unary nodes and trained to
recover those nodes. We used the following fea-
tures (conjoined with the class and with a flag in-
dicating if the node is a pre-terminal):

• The production rules above and beneath the
node (e.g., S->NP VP and NP->DT NN);

• The node’s label, alone and conjoined with the
parent’s label or the left/right sibling’s label;

• The leftmost and rightmost word/lemma/POS
tag/morpho-syntactic tags in the node’s yield;

• If the left/right node is a pre-terminal, the
word/lemma/morpho-syntactic tags beneath.

This is a relatively easy task: when gold unaryless
c-trees are provided as input, we obtain an EVALB
F1-score of 99.43%. This large figure is due to the
small amount of unary nodes, making this mod-
ule have less impact on the final parser than the
d-parser. Being a lightweight unstructured task,
this step took only 0.7 seconds to run on PTB §22,
a tiny fraction (less than 2%) of the total runtime.

Table 1 shows the accuracies obtained with the
d-parser followed by the unary predictor. Since
two-stage TP-Full with delta-encoding is the best
strategy, we use this configuration in the sequel.
To further explore the impact of delta encoding,
we report in Table 2 the scores obtained by direct
and delta encodings on eight other treebanks (see
§5.2 for details on these datasets). With the ex-
ception of German, in all cases the delta encoding
yielded better EVALB F1-scores with fewer labels.

5 Experiments

To evaluate the performance of our reduction-
based parsers, we conduct experiments in a variety

Parser LR LP F1 #Toks/s.
Charniak (2000) 89.5 89.9 89.5 –
Klein and Manning (2003) 85.3 86.5 85.9 143
Petrov and Klein (2007) 90.0 90.3 90.1 169
Carreras et al. (2008) 90.7 91.4 91.1 –
Zhu et al. (2013) 90.3 90.6 90.4 1,290
Stanford Shift-Reduce (2014) 89.1 89.1 89.1 655
Hall et al. (2014) 88.4 88.8 88.6 12
This work 89.9 90.4 90.2 957
Charniak and Johnson (2005)⇤ 91.2 91.8 91.5 84
Socher et al. (2013)⇤ 89.1 89.7 89.4 70
Zhu et al. (2013)⇤ 91.1 91.5 91.3 –

Table 3: Results on the English PTB §23. All systems report-
ing runtimes were run on the same machine. Marked as ⇤ are
reranking and semi-supervised c-parsers.

of treebanks, both continuous and discontinuous.

5.1 Results on the English PTB

Table 3 shows the accuracies and speeds achieved
by our system on the English PTB §23, in compar-
ison to state-of-the-art c-parsers. We can see that
our simple reduction-based c-parser surpasses the
three Stanford parsers (Klein and Manning, 2003;
Socher et al., 2013, and Stanford Shift-Reduce),
and is on par with the Berkeley parser (Petrov and
Klein, 2007), while being more than 5 times faster.

The best supervised competitor is the recent
shift-reduce parser of Zhu et al. (2013), which
achieves similar, but slightly better, accuracy and
speed. Our technique has the advantage of being
flexible: since the time for d-parsing is the domi-
nating factor (see §4.4), plugging a faster d-parser
automatically yields a faster c-parser. While
reranking and semi-supervised systems achieve
higher accuracies, this aspect is orthogonal, since
the same techniques can be applied to our parser.

5.2 Results on the SPMRL Datasets

We experimented with datasets for eight lan-
guages, from the SPMRL14 shared task (Seddah
et al., 2014). We used the official training, de-
velopment and test sets with the provided pre-
dicted POS tags. For French and German, we
used the lexicalization rules detailed in Dybro-
Johansen (2004) and Rehbein (2009), respectively.
For Basque, Hungarian and Korean, we always
took the rightmost modifier as head-child node.
For Hebrew and Polish we used the leftmost mod-
ifier instead. For Swedish we induced head rules
from the provided dependency treebank, as de-
scribed in Versley (2014b). These choices were
based on dev-set experiments.

Table 4 shows the results. For all languages ex-

1529

(Fernández-González and Martins, 2015)
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Choosing a Parser: Performance

Constituency parsing in other languages

Parser Basque French German Hebrew Hungar. Korean Polish Swedish Avg.
Berkeley 70.50 80.38 78.30 86.96 81.62 71.42 79.23 79.19 78.45
Berkeley Tagged 74.74 79.76 78.28 85.42 85.22 78.56 86.75 80.64 81.17
Hall et al. (2014) 83.39 79.70 78.43 87.18 88.25 80.18 90.66 82.00 83.72
Crabbé and Seddah (2014) 85.35 79.68 77.15 86.19 87.51 79.35 91.60 82.72 83.69
This work 85.90 78.75 78.66 88.97 88.16 79.28 91.20 82.80 84.22
Björkelund et al. (2014) 88.24 82.53 81.66 89.80 91.72 83.81 90.50 85.50 86.72

Table 4: F1-scores on eight treebanks of the SPMRL14 shared task, computed with the provided EVALB SPMRL tool, which
takes into account all tokens except root nodes. Berkeley Tagged is a version of Petrov and Klein (2007) using the predicted POS
tags provided by the organizers. Crabbé and Seddah (2014) is the best non-reranking system in the shared task, and Björkelund
et al. (2014) the ensemble and reranking-based system which won the official task. We report their published scores.

sistent with the predicted d-structure. Our work
differs in which we do not need to run a c-parser
in the second stage—instead, the d-parser already
stores constituent information in the arc labels,
and the only necessary post-processing is to re-
cover unary nodes. Another advantage of our
method is that it can be readily used for discon-
tinuous parsing, while their constrained CKY al-
gorithm can only produce continuous parses.

7 Conclusion

We proposed a reduction technique that allows
to implement a c-parser when only a d-parser is
given. The technique is applicable to any d-parser,
regardless of its nature or kind. This reduction was
accomplished by endowing d-trees with a weak or-
der relation, and showing that the resulting class of
head-ordered d-trees is isomorphic to constituent
trees. We showed empirically that the our re-
duction leads to highly-competitive c-parsers for
English and for eight morphologically rich lan-
guages; and that it outperforms the current state
of the art in discontinuous parsing of German.
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Choosing a Parser: Performance
SOTA for English dependency parsing (WSJ §23):
93%–94% UAS, 91%–92% LAS (Zhou et al., 2015)

Labelled Attachment Score (LAS) is stricter than Unlabelled Attachment
Score (UAS)
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Summary

• While constituency parses give hierarchically nested phrases, dependency parses
represent syntax with trees whose edges connect words in the sentence. (No
abstract phrase categories like NP.) Edges often labeled with relations like
subject.

• Head rules govern how a lexicalized constituency grammar can be extracted
from a treebank, and how a constituency parse can be coverted to a dependency
parse.

• For English, it is often fastest and most convenient to parse directly to
dependencies. Two main paradigms, graph-based and transition-based, with
different kinds of models and search algorithms.

• Google “online dependency parser”.
Try out the Stanford parser and SEMAFOR!
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