
Foundations of Natural Lanugage Processing
Lecture 12

CKY Parsing, treebanks and statistical parsing

Shay Cohen
(slides from Henry Thompson, Alex Lascarides and Sharon Goldwater)

28 March 2020

Shay Cohen FNLP Lecture 12 28 March 2020

CKY Algorithm

CKY (Cocke, Kasami, Younger) is a bottom-up, breadth-first parsing algorithm.

• Original version assumes grammar in Chomsky Normal Form.

• Add constituent A in cell (i, j) if there is:

– a rule A→ B, and a B in cell (i, j), or

– a rule A→ B C, and a B in cell (i,k) and a C in cell (k, j).

Shay Cohen FNLP Lecture 12 1

CKY Algorithm

CKY (Cocke, Kasami, Younger) is a bottom-up, breadth-first parsing algorithm.

• Original version assumes grammar in Chomsky Normal Form.

• Add constituent A in cell (i, j) if there is:

– a rule A→ B, and a B in cell (i, j), or

– a rule A→ B C, and a B in cell (i,k) and a C in cell (k, j).

• Fills chart in order: only looks for rules that use a constituent of length n
after finding all constituents of length less than n. So, guaranteed to find all
possible parses.

Shay Cohen FNLP Lecture 12 2

CKY Pseudocode

• Assume input sentence with indices 0 to n, and chart c.

for len = 1 to n: #number of words in constituent

for i = 0 to n-len: #start position

j = i+len #end position

#process unary rules

foreach A->B where c[i,j] has B

add A to c[i,j] with a pointer to B

for k = i+1 to j-1 #mid position

#process binary rules

foreach A->B C where c[i,k] has B and c[k,j] has C

add A to c[i,j] with pointers to B and C

• Takes time O(Gn3), where G is the number of grammar rules.

Shay Cohen FNLP Lecture 12 3

CKY Example

S → NP VP
NP → D N | Pro | PropN
D → PosPro | Art | NP ’s
VP → Vi | Vt NP | Vp NP VP
Pro → i | we | you | he | she | him | her
PosPro → my | our | your | his | her
PropN → Robin | Jo
Art → a | an | the
N → cat | dog | duck | saw | park | telescope | bench
Vi → sleep | run | duck
Vt → eat | break | see | saw
Vp → see | saw | heard

Shay Cohen FNLP Lecture 12 4

CKY Example

Length 1 constituents: POS tags

1 2 3 4

0 Pro
1 Vt,Vp,N
2 Pro, PosPro
3 N,Vi

ohe1 1saw2 2her3 3duck4

• We’ve added all POSs that are allowed for each word.

Shay Cohen FNLP Lecture 12 5

CKY Example

Length 1 constituents: Unary rule NP→ Pro

1 2 3 4

0 Pro, NP
1 Vt,Vp,N
2 Pro, PosPro
3 N,Vi

ohe1 1saw2 2her3 3duck4

• red shows which children create which parents.

• Normally we’d add pointers from parent to child to store this info permanently,
but we’d end up with too many arrows here to see what’s going on!

Shay Cohen FNLP Lecture 12 6

CKY Example

Length 1 constituents: Unary rules D→ PosPro, NP→ Pro and VP→ Vi

1 2 3 4

0 Pro, NP
1 Vt,Vp,N
2 Pro, NP, PosPro, D
3 N, Vi, VP

ohe1 1saw2 2her3 3duck4

• red shows which children create which parents.

• Normally we’d add pointers from parent to child to store this info permanently,
but we’d end up with too many arrows here to see what’s going on!

Shay Cohen FNLP Lecture 12 7

CKY Example

Length 2 constituents: Binary rule NP→ D N

1 2 3 4

0 Pro, NP
1 Vt,Vp,N
2 Pro, NP, PosPro, D NP
3 N,Vi, VP

ohe1 1saw2 2her3 3duck4

• red shows which children create which parents.

• Normally we’d add pointers from parent to child to store this info permanently,
but we’d end up with too many arrows here to see what’s going on!

Shay Cohen FNLP Lecture 12 8

CKY Example

Length 3 constituents: Binary rule VP→ Vt NP

1 2 3 4

0 Pro, NP
1 Vt,Vp,N VP
2 Pro, N, PosPro, D NP
3 N,Vi, VP

ohe1 1saw2 2her3 3duck4

• Vt from (1,2) plus NP from (2,4) makes a VP from (1,4).

• For cell (1,4) we also consider (1,3) plus (3,4) but there’s nothing in those
cells that can combine to make a larger phrase.

Shay Cohen FNLP Lecture 12 9

CKY Example

Length 3 constituents: alternate parses

1 2 3 4

0 Pro, NP
1 Vt,Vp,N VP
2 Pro, NP, PosPro, D NP
3 N, Vi, VP

ohe1 1saw2 2her3 3duck4

• We also have another way to build the same VP (1,4). Add more pointers to
remember this new analysis.

• (Not standard CKY because we used a ternary rule! In reality we would have
converted this rule into CNF, but still ended up with two parses for VP.)

Shay Cohen FNLP Lecture 12 10

CKY Example
Length 4 constituents: Binary rule S→ NP VP

1 2 3 4

0 Pro, NP S
1 Vt,Vp,N VP
2 Pro, PosPro, D NP
3 N,Vi

ohe1 1saw2 2her3 3duck4

• When we build the S, it doesn’t matter anymore that there are two VP
analyses, we just see the VP.
– Cells contain sets of labels
– Or dicts, if we are keeping backpointers

• Ambiguity is only clear if we go on to reconstruct the parses using our
backpointers.

Shay Cohen FNLP Lecture 12 11

A note about CKY ordering

• Notice that to fill cell (i, j), we use a cell from row i and a cell from column j.

• So, before trying to fill (i, j) we must fill in all cells to the left of j in row i
and all cells below cell i in column j.

• Here, we filled in all short entries, then longer ones

– effectively sweeping out diagonals beginning with the main diagonal and
moving up to the right

• but other orders can work (e.g., J&M fill in all spans ending at j, then
increment j.)

Shay Cohen FNLP Lecture 12 12

CKY in practice

• Avoids re-computing substructures, so much more efficient than depth-first
parsers (in worst case).

• Still may compute a lot of unnecessary partial parses.

• Simple version requires converting the grammar to CNF (may cause blowup:
remember time depends on grammar too!).

Various other chart parsing methods avoid these issues by combining top-down
and bottom-up approaches (see J&M or recall Inf2A).

But rather than going that way, we’ll focus on statistical parsing which can help
deal with both ambiguity and efficiency issues.

Shay Cohen FNLP Lecture 12 13

Towards probabilistic parsing

• We’ve seen various parsing algorithms, most recently CKY, that parses
exhaustively in polynomial time.

• But we haven’t discussed how to choose which of many possible parses is the
right one.

• The obvious solution: probabilities.

Shay Cohen FNLP Lecture 12 14

How big a problem is disambiguation?

• Early work in computational linguistics tried to develop broad-coverage hand-
written grammars.

– That is, grammars that include all sentences humans would judge as
grammatical in their language;

– while excluding all other sentences.

• As coverage grows, sentences can have hundreds or thousands of parses. Very
difficult to write heuristic rules for disambiguation.

• Plus, grammar is hard to keep track of! Trying to fix one problem can
introduce others.

• Enter the treebank grammar.

Shay Cohen FNLP Lecture 12 15

Treebank grammars

• The big idea: instead of paying linguists to write a grammar, pay them to
annotate real sentences with parse trees.

• This way, we implicitly get a grammar (for CFG: read the rules off the trees).

• And we get probabilities for those rules (using any of our favorite estimation
techniques).

• We can use these probabilities to improve disambiguation and even speed up
parsing.

Shay Cohen FNLP Lecture 12 16

Treebank grammars

For example, if we have this tree in our corpus:

S

NP

Pro

i

VP

Vt

saw

NP

Art

the

N

man

Then we add rules
S→ NP VP

NP→ Pro

Pro→ i

VP→ Vt NP

Vt→ saw

NP→ Art N

Art→ the

N→ man

With more trees, we can start to count rules and estimate their probabilities.

Shay Cohen FNLP Lecture 12 17

Example: The Penn Treebank

• The first large-scale parse annotation project, begun in 1989.

• Original corpus of syntactic parses: Wall Street Journal text

– About 40,000 annotated sentences (1m words)
– Standard phrasal categories like S, NP, VP, PP.

• Now many other data sets (e.g. transcribed speech), and different kinds of
annotation; also inspired treebanks in many other languages.

Shay Cohen FNLP Lecture 12 18

Creating a treebank PCFG

A probabilistic context-free grammar (PCFG) is a CFG where each rule NT→ β

(where β is a symbol sequence) is assigned a probability P(β|NT).

• The sum over all expansions of NT must equal 1: ∑β′P(β′|NT) = 1.

• Easiest way to create a PCFG from a treebank: MLE

– Count all occurrences of NT→ β in treebank.
– Divide by the count of all rules whose LHS is NT to get P(β|NT)

– P(NT −→C1,C2 . . .Cn|NT) = count(NT−→C1,C2...Cn)
count(NT)

• But as usual many rules have very low frequencies, so MLE isn’t good enough
and we need to smooth.

Shay Cohen FNLP Lecture 12 19

The probability of a parse

• Under this model, the probability of a parse t is simply the product of all rules
in the parse:

P(t) = ∏
NT→β∈t

NT → β

Shay Cohen FNLP Lecture 12 20

Statistical disambiguation example

How can parse probabilities help disambiguate PP attachment?

• Let’s use the following PCFG, inspired by Manning & Schuetze (1999):

S → NP VP 1.0 NP → NP PP 0.4
PP → P NP 1.0 NP → kids 0.1
VP → V NP 0.7 NP → birds 0.18
VP → VP PP 0.3 NP → saw 0.04
P → with 1.0 NP → fish 0.18
V → saw 1.0 NP → binoculars 0.1

• We want to parse kids saw birds with fish.

Shay Cohen FNLP Lecture 12 21

Probability of parse 1

S1.0

NP0.1

kids

VP0.7

V1.0

saw

NP0.4

NP0.18

birds

PP1.0

P1.0

with

NP0.18

fish

• P(t1) = 1.0 ·0.1 ·0.7 ·1.0 ·0.4 ·0.18 ·1.0 ·1.0 ·0.18 = 0.0009072

Shay Cohen FNLP Lecture 12 22

Probability of parse 2

S1.0

NP0.1

kids

VP0.3

VP0.7

V1.0

saw

NP0.18

birds

PP1.0

P1.0

with

NP0.18

fish

• P(t2) = 1.0 ·0.1 ·0.3 ·0.7 ·1.0 ·0.18 ·1.0 ·1.0 ·0.18 = 0.0006804

• which is less than P(t1) = 0.0009072, so t1 is preferred. Yay!

Shay Cohen FNLP Lecture 12 23

The probability of a sentence

• Since t implicitly includes the words ~w, we have P(t) = P(t,~w).

• So, we also have a language model. Sentence probability is obtained by
summing over T (~w), the set of valid parses of ~w:

P(~w) = ∑
t∈T (~w)

P(t,~w) = ∑
t∈T (~w)

P(t)

• In our example,
P(kids saw birds with fish) = 0.0006804+0.0009072.

Shay Cohen FNLP Lecture 12 24

Probabilistic CKY

It is straightforward to extend CKY parsing to the probabilistic case.

• Goal: return the highest probability parse of the sentence (analogous to Viterbi)

– When we find an NT spanning (i, j), store its probability along with its label
in cell (i, j).

– If we later find an NT with the same span but higher probability, replace the
probability and the backpointers for NT in cell (i, j).

Shay Cohen FNLP Lecture 12 25

Probabilistic CKY

We also have analogues to the other HMM algorithms.

• The inside algorithm computes the probability of the sentence (analogous to
forward algorithm)

– Same as above, but instead of storing the best parse for NT, store the sum
of all parses.

• The inside-outside algorithm algorithm is a form of EM that learns grammar
rule probs from unannotated sentences (analogous to forward-backward).

Shay Cohen FNLP Lecture 12 26

Best-first probabilistic parsing

• So far, we’ve been assuming exhaustive parsing: return all possible parses.

• But treebank grammars are huge!!

– Exhaustive parsing of WSJ sentences up to 40 words long adds on average
over 1m items to chart per sentence.1

– Can be hundreds of possible parses, but most have extremely low probability:
do we really care about finding these?

• Best-first parsing can help.

1Charniak, Goldwater, and Johnson, WVLC 1998.

Shay Cohen FNLP Lecture 12 27

Best-first probabilistic parsing

Basic idea: use probabilities of subtrees to decide which ones to build up further.

• Each time we find a new constituent, we give it a score (“figure of merit”)
and add it to an agenda, which is ordered by score.

• Then we pop the next item off the agenda, add it to the chart, and see which
new constituents we can make using it.

• We add those to the agenda, and iterate.

Notice we are no longer filling the chart in any fixed order.

Many variations on this idea (including incremental ones), often limiting the size
of the agenda by pruning out low-scoring edges (beam search).

Shay Cohen FNLP Lecture 12 28

Best-first intuition

Suppose red constituents are in chart already; blue are on agenda.

S

NP

Pro

he

VP

Vt

saw

NP

PosPro

her

N

duck

S

NP

Pro

he

VP

Vp

saw

NP

Pro

her

VP

Vi

duck

If the VP in right-hand tree scores high enough, we’ll pop that next, add it to
chart, then find the S. So, we could complete the whole parse before even finding
the alternative VP.

Shay Cohen FNLP Lecture 12 29

How do we score constituents?

Perhaps according to the probability of the subtree they span? So, P(left
example)=(0.7)(0.18) and P(right example)=0.18.

VP0.7

V1.0

saw

NP0.18

birds

PP1.0

P1.0

with

NP0.18

fish

Shay Cohen FNLP Lecture 12 30

How do we score constituents?

But what about comparing different sized constituents?

VP0.7

V1.0

saw

NP0.18

birds

VP0.3

VP0.7

V1.0

saw

NP0.18

birds

PP1.0

P1.0

with

NP0.18

fish

Shay Cohen FNLP Lecture 12 31

A better figure of merit

• If we use raw probabilities for the score, smaller constituents will almost always
have higher scores.

– Meaning we pop all the small constituents off the agenda before the larger
ones.

– Which would be very much like exhaustive bottom-up parsing!

• Instead, we can divide by the number of words in the constituent.

– Very much like we did when comparing language models (recall per-word
cross-entropy)!

• This works much better, but now not guaranteed to find the best parse first.
Other improvements are possible (including A*).

Shay Cohen FNLP Lecture 12 32

But wait a minute...

Best-first parsing shows how simple (“vanilla”) treebank PCFGs can improve
efficiency. But do they really solve the problem of disambiguation?

• Our example grammar gave the right parse for this sentence:

kids saw birds with fish

• What happens if we parse this sentence?

kids saw birds with binoculars

Shay Cohen FNLP Lecture 12 33

Vanilla PCFGs: no lexical dependencies

S1.0

NP0.1

kids

VP0.7

V1.0

saw

NP0.4

NP0.18

birds

PP1.0

P1.0

with

NP0.1

binoculars

S1.0

NP0.1

kids

VP0.3

VP0.7

V1.0

saw

NP0.18

birds

PP1.0

P1.0

with

NP0.1

binoculars

• Exactly the same probabilities as the “fish” trees, except divide out P(fish|NP)
and multiply in P(binoculars|NP) in each case.

• So, the same (left) tree is preferred, but now incorrectly!

Shay Cohen FNLP Lecture 12 34

Vanilla PCFGs: no lexical dependencies

Replacing one word with another with the same POS will never result in a different
parsing decision, even though it should!

• More examples:

– She stood by the door covered in tears vs.
She stood by the door covered in ivy

– She called on the student vs.
She called on the phone.
(assuming “on” has the same POS...)

Shay Cohen FNLP Lecture 12 35

Vanilla PCFGs: no global structural preferences

• Ex. in Switchboard corpus, the probability of NP→ Pronoun

– in subject position is 0.91 he saw the dog
– in object position is 0.34 the dog bit him

• Lots of other rules also have different probabilities depending on where they
occur in the sentence.

• But PCFGs are context-free, so an NP is an NP is an NP, and will have the
same expansion probs regardless of where it appears.

• Next week: How to bring words back in to the story...

Shay Cohen FNLP Lecture 12 36

