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Today we will look at. . .

• Annotation

– Why “gold” 6= perfect

– Quality Control

• Evaluation

– Experimental setup
– Significance testing
– Error analysis
– Evaluating without Gold Standards:

How do we evaluate when there is more than one right answer?
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Factors in Annotation

Suppose you are tasked with building an annotated corpus. (E.g., with part-of-
speech tags.) In order to estimate cost in time and money, you need to decide
on:

• Source data (genre? size? licensing?)

• Annotation scheme (complexity? guidelines?)

• Annotators (expertise? training?)

• Annotation software (graphical interface?)

• Quality control procedures (multiple annotation, adjudication?)
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Annotation Scheme

• Assuming a competent annotator, some kinds of annotation are straightforward
for most inputs.
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Annotation Scheme

• Assuming a competent annotator, some kinds of annotation are straightforward
for most inputs.

• Others are not.

– Text may be ambiguous
– There may be gray area between categories in the annotation scheme
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You play annotator

Noun or adverb?

• Yesterday was my birthday .

• Yesterday I ate a cake .

• He was fired yesterday for leaking the information .

• I read it in yesterday ’s news .

• I had not heard of it until yesterday .
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You play annotator

Verb, noun, or adjective?

• We had been walking quite briskly

• Walking was the remedy, they decided

• In due time Sandburg was a walking thesaurus of American folk music.

• we all lived within walking distance of the studio

• a woman came along carrying a folded umbrella as a walking stick

• The Walking Dead premiered in the U.S. on October 31, 2010, on the cable
television channel AMC

Shay Cohen FNLP Lecture 10 7



Annotation: Not as easy as you might think

Pretty much any annotation scheme for language will have some difficult cases
where there is gray area, and multiple decisions are plausible.

• Because human language needs to be flexible, it cuts corners and is reshaped
over time.

• Not just syntax: wait till we get to semantics!
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Annotation Guidelines

However, we want a dataset’s annotations to be as clean as possible so we can
use them reliably in systems.

Documenting conventions in an annotation manual/standard/guidelines
document is important to help annotators produce consistent data, and to
help end users interpret the annotations correctly.
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Annotation Guidelines

• Penn Treebank: 36 POS tags (excluding punctuation).

• Tagging guidelines (3rd Revision): 34 pages

– “The temporal expressions yesterday, today and tomorrow should be tagged
as nouns (NN) rather than as adverbs (RB). Note that you can (marginally)
pluralize them and that they allow a possessive form, both of which true
adverbs do not.” (p. 19)

– An entire page on nouns vs. verbs.
– 3 pages on adjectives vs. verbs.

• Penn Treebank bracketing (tree) guidelines: >300 pages!
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Annotation Quality

But even with extensive guidelines, human annotations won’t be perfect:

• Simple error (hitting the wrong button)

• Not reading the full context

• Not noticing an erroneous pre-annotation

• Forgetting a detail from the guidelines

• Cases not anticipated by or not fully specified in guidelines (room for
interpretation)

“Gold” data will have some tarnish. How can we measure its quality?
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Inter-annotator agreement (IAA)

• An important way to estimate the reliability of annotations is to have
multiple people independently annotate a common sample, and measure inter-
annotator/coder/rater agreement.

• Raw agreement rate: proportion of labels in agreement

• If the annotation task is perfectly well-defined and the annotators are well-
trained and do not make mistakes, then (in theory) they would agree 100%.

• If agreement is well below what is desired (will differ depending on the kind
of annotation), examine the sources of disagreement and consider additional
training or refining guidelines.

• The agreement rate can be thought of as an upper bound (human ceiling)
on accuracy of a system evaluated on that dataset.
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IAA: Beyond raw agreement rate

• Raw agreement rate counts all annotation decisions equally.

• Some measures take knowledge about the annotation scheme into account
(e.g., counting singular vs. plural noun as a minor disagreement compared to
noun vs. preposition).

• What if some decisions (e.g., POS tags) are far more frequent than others?

– If 2 annotators both tagged hell as a noun, what is the chance that they
agreed by accident? What if they agree that it is an interjection (rare
tag)—is that equally likely to be an accident?

– Chance-corrected measures such as Cohen’s kappa (κ) adjust the
agreement score based on label probabilities.

– . . . but they make modeling assumptions about how “accidental” agreement
would arise; important that these match the reality of the annotation process!

– More below on hypothesis testing/statistical significance.

Shay Cohen FNLP Lecture 10 13



Crowdsourcing

• Quality control is even more important when eliciting annotations from “the
crowd”.

• E.g., Amazon Mechanical Turk facilitates paying anonymous web users small
amounts of money for small amounts of work (“Human Intelligence Tasks”).

• Need to take measures to ensure annotators are qualified and taking the task
seriously.

– Redundancy to combat noise: Elicit 5+ annotations per data point.
– Embed data points with known answers, reject annotators who get them

wrong.
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The Nature of Evaluation

• Scientific method rests on making and testing hypotheses.

• Evaluation is just another name for testing.

• Evaluation not just for public review:

– It’s how you manage internal development
– And even how systems improve themselves (see ML courses).
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What Hypotheses?

About existing linguistic objects:

• Is this text by Shakespeare or Marlowe?

About output of a language system:

• How well does this language model predict the data?

• How accurate is this segmenter/tagger/parser?

– Is this segmenter/tagger/parser better than that one?

About human beings:

• How reliable is this person’s annotation?

• To what extent do these two annotators agree? (IAA)
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Gold Standard Evaluation

• In many cases we have a record of ‘the truth’:

– The best human judgement as to what the correct segmentation/tag/parse/reading
is,
or what the right documents are in response to a query.

• Gold standards used both for training and for evaluation

• But testing must be done on unseen data (held-out test set; train/test split)

Don’t ever train on data that you’ll use in testing!!
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Tuning

• Often, in designing a system, you’ll want to tune it by trying several
configuration options and choosing the one that works best empirically.

– E.g., Lidstone (add-λ) smoothing; choosing features for text classification.

• If you run several experiments on the test set, you risk overfitting it; i.e., the
test set is no longer a reliable proxy for new data.

• One solution is to hold out a second set for tuning, called a development
(“dev”) set. Save the test set for the very end.
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Cross-validation

What if my dataset is too small to have a nice train/test or train/dev/test split?

• k-fold cross-validation: partition the data into k pieces and treat them as
mini held-out sets. Each fold is an experiment with a different held-out set,
using the rest of the data for training:

• After k folds, every data point will have a held-out prediction!

• If tuning the system via cross-validation, still important to have a separate
blind test set.
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Measuring a Model’s Performance

Accuracy: Proportion model gets right:

|right|
|test-set|

× 100

E.g., POS tagging (state of the art ≈ 96%).
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Measuring a Model’s Performance

Precision, Recall, F-score

• For isolating performance on a particular label in multi-label tasks, or

• For chunking, phrase structure parsing, or anything where word-by-word
accuracy isn’t appropriate.

• F1-score: Harmonic mean of
precision (proportion of model’s answers that are right) and
recall (proportion of test data that model gets right).

• E.g., for the POS tag NN:

P = |tokens correctly tagged NN|
|all tokens automatically tagged NN| = TP

TP+FP

R = |tokens correctly tagged NN|
|all tokens gold-tagged NN| = TP

TP+FN

F1 =
2P ·R
P+R
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Upper Bounds, Lower Bounds?

Suppose your POS tagger has 95% accuracy? Is that good? Bad??

Upper Bound: Turing Test:

• When using a human Gold Standard, check the agreement of humans against
that standard.

Lower Bound: Performance of a ‘simpler’ model (baseline)

• Model always picks most frequent class (majority baseline).

• Model assigns a class randomly according to:

1. Even probability distribution; or
2. Probability distribution that matches the observed one.

Suitable upper and lower bounds depend on the task.
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Measurements: What’s Significant?

• We’ll be measuring things, and comparing measurements.

• What and how we measure depends on the task.

• But all have one issue in common:

Are the differences we find significant?

• In other words, should we interpret the differences as down to pure chance?
Or is something more going on?

• Is our model significantly better than the baseline model?
Is it significantly worse than the upper bound?
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Example: Tossing a Coin

• I tossed a coin 40 times; it came up heads 17 times.

• Expected value of fair coin is 20. So we’re comparing 17 and 20.

• If this difference is significant, then it’s (probably) not a fair coin.
If not, it (probably) is.
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Normal distributions

Significance measurement can be complex to understand, but the basic idea is
simple (for normal distributions):

• Measure difference in terms of standard deviation

Standard deviation is essentially a measure of how representative the mean is

• The more outliers, and the further they are from the mean

• The less representative the mean is

• The standard deviation quantifies this
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Mean and standard deviation

Definitions:

Mean of N measurements
n1+n2+n3+···+nN

N Call this µ

Standard deviation of N measurements√
(n1−µ)2+(n2−µ)2+(n3−µ)2+···+(nN−µ)2

N
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The outcomes if the coin is fair

The distribution over 100,000 trials (i.e., in each trial toss coin 40 times) is similar
to a normal distribution curve.

• The peak is at 50% heads, but lots of other plausible outcomes.
• Even a result more than two standard deviations out will come up a bit less

than 1 in 20 trials (i.e., 2,000/100,000)
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Which Significance Test?

• Parametric when the underlying distribution is normal.

– t-test, z-test,. . .
– You don’t need to know the mathematical formulae;

available in statistical libraries!

• Non-Parametric otherwise.

– Usually do need non-parametric tests:
remember Zipf’s Law!

– Can use McNemar’s test or variants of it.

See Smith (2011, Appendix B) for a detailed discussion of significance testing methods for NLP.
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Error Analysis

• Summary scores are important, but don’t always tell the full picture!

• Once you’ve built your system, it’s always a good idea to dig into its output
to identify patterns.

– Quantitative and qualitative (look at some examples!)
– You may find bugs (e.g., predictions are always wrong for words with

accented characters)
– Or think of ways to improve your system

• A confusion matrix can help in spotting problem areas
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Confusion Matrices

Figures on the main diagonal are for the correct answer

• Others are mistakes

• Mistakes in bold are perhaps large enough to worry about...
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Tasks where there is > 1 right answer

Example: A Paraphrasing Task

• Estimate that John enjoyed the book means John enjoyed reading the book.

• Lots of closely related words to read are good too:
skim through, go through, peruse, etc.
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Tasks where there is > 1 right answer

Example: A Paraphrasing Task

• Estimate that John enjoyed the book means John enjoyed reading the book.

• Lots of closely related words to read are good too:
skim through, go through, peruse, etc.

Evaluation: ‘Turing Test’

• Classify candidate paraphrases as high, medium or low probability.

• Measure correlation between human vs. machine’s judgements.

• Result was 0.64. Is that good?

• Upper bound: average correlation between two human judges! That’s 0.74.

• Can use above tests to measure if these are significantly different.
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Summary

• Lots of things we might be evaluating.

• Generally, NLP systems evaluated against gold standard data, which is often
quite expensive to collect.

• All that is “gold” does not glitter. Important to remember where the data
came from and measure reliability.

• You compare performance of your model against: upper bound, baseline
model, someone else’s model, and use an appropriate significance test to see if
differences are ‘real’ or within margin of error (i.e., likely due to chance).
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