Today we will look at. . .

• Annotation
 – Why “gold” ≠ perfect
 – Quality Control

• Evaluation
 – Experimental setup
 – Significance testing
 – Error analysis
 – Evaluationg without Gold Standards:
 How do we evaluate when there is more than one right answer?

Factors in Annotation

Suppose you are tasked with building an annotated corpus. (E.g., with part-of-speech tags.) In order to estimate cost in time and money, you need to decide on:

• Source data (genre? size? licensing?)
• Annotation scheme (complexity? guidelines?)
• Annotators (expertise? training?)
• Annotation software (graphical interface?)
• Quality control procedures (multiple annotation, adjudication?)
Annotation Scheme

• Assuming a competent annotator, some kinds of annotation are straightforward for most inputs.

• Others are not.
 – Text may be ambiguous
 – There may be gray area between categories in the annotation scheme

You play annotator

Noun or adverb?

• Yesterday was my birthday.

• Yesterday I ate a cake.

• He was fired yesterday for leaking the information.

• I read it in yesterday’s news.

• I had not heard of it until yesterday.

Verb, noun, or adjective?

• We had been walking quite briskly

• Walking was the remedy, they decided.

• In due time Sandburg was a walking thesaurus of American folk music.

• we all lived within walking distance of the studio

• a woman came along carrying a folded umbrella as a walking stick

• The Walking Dead premiered in the U.S. on October 31, 2010, on the cable television channel AMC
Annotation: Not as easy as you might think

Pretty much any annotation scheme for language will have some difficult cases where there is gray area, and multiple decisions are plausible.

- Because human language needs to be flexible, it cuts corners and is reshaped over time.

- Not just syntax: wait till we get to semantics!

Annotation Guidelines

However, we want a dataset's annotations to be as clean as possible so we can use them reliably in systems.

Documenting conventions in an annotation manual/standard/guidelines document is important to help annotators produce consistent data, and to help end users interpret the annotations correctly.

Annotation Guidelines

- Penn Treebank: 36 POS tags (excluding punctuation).

- Tagging guidelines (3rd Revision): 34 pages
 - “The temporal expressions yesterday, today and tomorrow should be tagged as nouns (NN) rather than as adverbs (RB). Note that you can (marginally) pluralize them and that they allow a possessive form, both of which true adverbs do not.” (p. 19)
 - An entire page on nouns vs. verbs.
 - 3 pages on adjectives vs. verbs.

- Penn Treebank bracketing (tree) guidelines: >300 pages!

Annotation Quality

But even with extensive guidelines, human annotations won’t be perfect:

- Simple error (hitting the wrong button)

- Not reading the full context

- Not noticing an erroneous pre-annotation

- Forgetting a detail from the guidelines

- Cases not anticipated by or not fully specified in guidelines (room for interpretation)

“Gold” data will have some tarnish. How can we measure its quality?
Inter-annotator agreement (IAA)

- An important way to estimate the reliability of annotations is to have multiple people independently annotate a common sample, and measure inter-annotator/coder/rater agreement.

- **Raw agreement rate**: proportion of labels in agreement

- If the annotation task is perfectly well-defined and the annotators are well-trained and do not make mistakes, then (in theory) they would agree 100%.

- If agreement is well below what is desired (will differ depending on the kind of annotation), examine the sources of disagreement and consider additional training or refining guidelines.

- The agreement rate can be thought of as an upper bound (human ceiling) on accuracy of a system evaluated on that dataset.

IAA: Beyond raw agreement rate

- Raw agreement rate counts all annotation decisions equally.

- Some measures take knowledge about the annotation scheme into account (e.g., counting singular vs. plural noun as a minor disagreement compared to noun vs. preposition).

- What if some decisions (e.g., POS tags) are far more frequent than others?
 - If 2 annotators both tagged *hell* as a noun, what is the chance that they agreed by accident? What if they agree that it is an interjection (rare tag)—is that equally likely to be an accident?
 - **Chance-corrected** measures such as Cohen’s kappa (κ) adjust the agreement score based on label probabilities.
 - . . . but they make modeling assumptions about how “accidental” agreement would arise; important that these match the reality of the annotation process!
 - More below on hypothesis testing/statistical significance.

Crowdsourcing

- Quality control is even more important when eliciting annotations from “the crowd”.

- E.g., Amazon Mechanical Turk facilitates paying anonymous web users small amounts of money for small amounts of work (“Human Intelligence Tasks”).

- Need to take measures to ensure annotators are qualified and taking the task seriously.
 - Redundancy to combat noise: Elicit 5+ annotations per data point.
 - Embed data points with known answers, reject annotators who get them wrong.

The Nature of Evaluation

- Scientific method rests on making and testing hypotheses.

- Evaluation is just another name for testing.

- Evaluation not just for public review:
 - It’s how you manage internal development
 - And even how systems improve themselves (see ML courses).
What Hypotheses?

About existing linguistic objects:

• Is this text by Shakespeare or Marlowe?

About output of a language system:

• How well does this language model predict the data?

• How accurate is this segmenter/tagger/parser?
 – Is this segmenter/tagger/parser better than that one?

About human beings:

• How reliable is this person’s annotation?

• To what extent do these two annotators agree? (IAA)

Gold Standard Evaluation

• In many cases we have a record of ‘the truth’:
 – The best human judgement as to what the correct segmentation/tag/parse/reading is, or what the right documents are in response to a query.

• Gold standards used both for training and for evaluation

• But testing must be done on unseen data (held-out test set; train/test split)

 Don’t ever train on data that you’ll use in testing!!

Tuning

• Often, in designing a system, you’ll want to tune it by trying several configuration options and choosing the one that works best empirically.
 – E.g., Lidstone (add-λ) smoothing; choosing features for text classification.

• If you run several experiments on the test set, you risk overfitting it; i.e., the test set is no longer a reliable proxy for new data.

• One solution is to hold out a second set for tuning, called a development (“dev”) set. Save the test set for the very end.

Cross-validation

What if my dataset is too small to have a nice train/test or train/dev/test split?

• k-fold cross-validation: partition the data into k pieces and treat them as mini held-out sets. Each fold is an experiment with a different held-out set, using the rest of the data for training:

 - After k folds, every data point will have a held-out prediction!

 - If tuning the system via cross-validation, still important to have a separate blind test set.
Measuring a Model’s Performance

Accuracy: Proportion model gets right:

\[
\frac{|\text{right}|}{|\text{test-set}|} \times 100
\]

E.g., POS tagging (state of the art \(\approx 96\%\)).

\[\begin{align*}
P &= \frac{|\text{tokens correctly tagged NN}|}{|\text{all tokens automatically tagged NN}|} = \frac{TP}{TP+FP} \\
R &= \frac{|\text{tokens correctly tagged NN}|}{|\text{all tokens gold-tagged NN}|} = \frac{TP}{TP+FN} \\
F_1 &= \frac{P \cdot R}{P+R}
\end{align*}\]

Upper Bounds, Lower Bounds?

Suppose your POS tagger has 95% accuracy? Is that good? Bad??

- When using a human Gold Standard, check the agreement of humans against that standard.

- Model always picks most frequent class (majority baseline).

- Model assigns a class randomly according to:
 1. Even probability distribution; or
 2. Probability distribution that matches the observed one.

Suitable upper and lower bounds depend on the task.

Measurements: What’s Significant?

- We’ll be measuring things, and comparing measurements.

- What and how we measure depends on the task.

- But all have one issue in common:

 Are the differences we find significant?

- In other words, should we interpret the differences as down to pure chance? Or is something more going on?

- Is our model significantly better than the baseline model? Is it significantly worse than the upper bound?
Example: Tossing a Coin

• I tossed a coin 40 times; it came up heads 17 times.

• Expected value of fair coin is 20. So we’re comparing 17 and 20.

• If this difference is significant, then it’s (probably) not a fair coin. If not, it (probably) is.

Which Significance Test?

• Paremetric when the underlying distribution is normal.
 – t-test, z-test, . . .
 – You don’t need to know the mathematical formulae; available in statistical libraries!

• Non-Parametric otherwise.
 – Usually do need non-parametric tests: remember Zipf’s Law!
 – Can use McNemar’s test or variants of it.

See Smith (2011, Appendix B) for a detailed discussion of significance testing methods for NLP.

Error Analysis

• Summary scores are important, but don’t always tell the full picture!

• Once you’ve built your system, it’s always a good idea to dig into its output to identify patterns.
 – Quantitative and qualitative (look at some examples!)
 – You may find bugs (e.g., predictions are always wrong for words with accented characters)
 – Or think of ways to improve your system

Confusion Matrices

<table>
<thead>
<tr>
<th>True Emotion</th>
<th>Estimated Emotion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anger</td>
<td>19</td>
</tr>
<tr>
<td>Boredom</td>
<td>1</td>
</tr>
<tr>
<td>Disgust</td>
<td>6</td>
</tr>
<tr>
<td>Fear</td>
<td>2</td>
</tr>
<tr>
<td>Happiness</td>
<td>1</td>
</tr>
<tr>
<td>Sadness</td>
<td>0</td>
</tr>
<tr>
<td>Neutral</td>
<td>0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Emotion Recog Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anger</td>
</tr>
<tr>
<td>Boredom</td>
</tr>
<tr>
<td>Disgust</td>
</tr>
<tr>
<td>Fear</td>
</tr>
<tr>
<td>Happiness</td>
</tr>
<tr>
<td>Sadness</td>
</tr>
<tr>
<td>Neutral</td>
</tr>
</tbody>
</table>

HMM Recog Rate: 79.2%
Tasks where there is >1 right answer

Example: A Paraphrasing Task

- Estimate that *John enjoyed the book* means *John enjoyed reading the book*.
- Lots of closely related words to *read* are good too: skim through, go through, peruse, etc.

Evaluation: ‘Turing Test’

- Classify candidate paraphrases as high, medium or low probability.
- Measure correlation between human vs. machine’s judgements.
- Result was 0.64. Is that good?
- Upper bound: average correlation between two human judges! That’s 0.74.
- Can use above tests to measure if these are significantly different.

Summary

- Lots of things we might be evaluating.
- Generally, NLP systems evaluated against gold standard data, which is often quite expensive to collect.
- All that is “gold” does not glitter. Important to remember where the data came from and measure reliability.
- You compare performance of your model against: upper bound, baseline model, someone else’s model, and use an appropriate significance test to see if differences are ‘real’ or within margin of error (i.e., likely due to chance).