FNLP Lecture 9: Algorithms for HMMs

Shay Cohen Based on slides by Henry Thompson and Sharon Goldwater

11 February 2020

Recap: HMM

- Elements of HMM:
 - Set of states (tags)
 - Output alphabet (word types)
 - Start state (beginning of sentence)
 - State transition probabilities
 - Output probabilities from each state

More general notation

- Previous lecture:
 - Sequence of tags $T = t_1 \dots t_n$

- Sequence of words $S = W_1 \dots W_n$

- This lecture:
 - Sequence of states $Q = q_1 \dots q_T$
 - Sequence of outputs $O = o_1 \dots o_T$
 - So t is now a time step, not a tag! And T is the sequence length.

Recap: HMM

- Given a sentence $O = o_1 \dots o_T$ with tags $Q = q_1 \dots q_T$, compute P(O,Q) as: $P(O,Q) = \prod_{t=1}^T P(o_t | q_t) P(q_t | q_{t-1})$
- But we want to $find^{rgmax}_{Q}P(Q|O)$ without enumerating all possible Q
 - Use Viterbi algorithm to store partial computations.

Today's lecture

- What algorithms can we use to
 - Efficiently compute the most probable tag sequence for a given word sequence?
 - Efficiently compute the likelihood for an HMM (probability it outputs a given sequence s)?
 - Learn the parameters of an HMM given unlabelled training data?
- What are the properties of these algorithms (complexity, convergence, etc)?

Tagging example

Words:	<s></s>	one	dog	bit	
Possible tags:	<\$>	CD	NN	NN	
(ordered by frequency for		NN	VB	VBD	
each word)		PRP			

Tagging example

Words:	<s></s>	one	dog	bit	
Possible tags:	<\$>	CD	NN	NN	
(ordered by frequency for		NN	VB	VBD	
each word)		PRP			

- Choosing the best tag for each word independently gives the wrong answer (<s> CD NN NN </s>).
- P(VBD|bit) < P(NN|bit), but may yield a better sequence (<s> CD NN VB </s>)
 - because P(VBD|NN) and P(</s>|VBD) are high.

Viterbi: intuition

Words:	<\$>	one	dog	bit	
Possible tags:	<\$>	CD	NN	NN	
(ordered by frequency for		NN	VB	VBD	
each word)		PRP			

- Suppose we have already computed
 a) The best tag sequence for <s> ... bit that ends in NN.
 b) The best tag sequence for <s> ... bit that ends in VBD.
- Then, the best full sequence would be either
 - sequence (a) extended to include </s>, or
 - sequence (b) extended to include </s>.

Viterbi: intuition

Words:	<\$>	one	dog	bit	
Possible tags:	<\$>	CD	NN	NN	
(ordered by frequency for		NN	VB	VBD	
each word)		PRP			

- But similarly, to get

 a) The best tag sequence for <s> ... bit that ends in NN.
- We could extend one of:
 - The best tag sequence for $\langle s \rangle \dots dog$ that ends in NN.
 - The best tag sequence for $\langle s \rangle \dots dog$ that ends in VB.
- And so on...

Viterbi: high-level picture

 Intuition: the best path of length t ending in state Q must include the best path of length t-1 to the previous state (call it P). (t now a time, not a tag):

- Because otherwise there must be a better path to P that we should have used, thereby getting a better path to Q
 - Remember the Markov assumptions
 - are *independent* of everything from <s> to Q

Viterbi: high-level picture

- Intuition: the best path of length t ending in state q must include the best path of length t-1 to the previous state. (t now a *time step*, not a *tag*). So,
 - Find the best path of length t-1 to each state.
 - Consider extending each of those by 1 step, to state q.
 - Take the best of those options as the best path to state $\ensuremath{q}\xspace$.

Notation

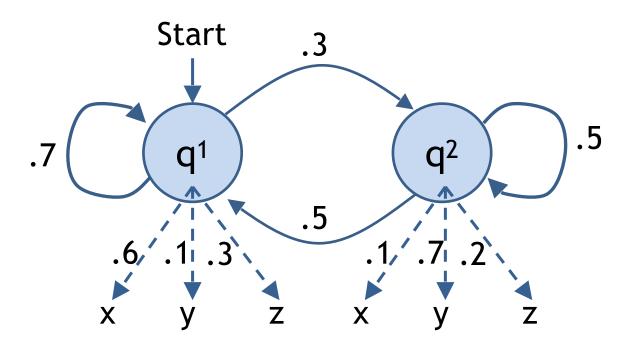
- Sequence of observations over time o₁, o₂, ..., o_T
 here, words in sentence
- Vocabulary size ${\bf V}$ of possible observations
- Set of possible states q¹, q², ..., q^N (see note next slide)
 here, tags
- A, an NxN matrix of transition probabilities

 a_{ij}: the prob of transitioning from state qⁱ to q^j. (JM3 Fig 8.7)
- B, an NxV matrix of output probabilities
 b_i(o_t): the prob of emitting o_t from state q¹. (JM3 Fig 8.8)

Note on notation

- J&M use $q_1, q_2, ..., q_N$ for set of states, but *also* use $q_1, q_2, ..., q_T$ for state sequence over time.
 - So, just seeing \mathbf{q}_1 is ambiguous (though usually disambiguated from context).
 - I'll instead use q^{i} for state names, and \boldsymbol{q}_{t} for state at time t.
 - So we could have $q_t = q^i$, meaning: the state we're in at time t is q^i .

HMM example w/ new notation



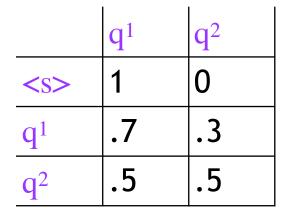
- States {q¹, q²} (or {<s>, q¹, q²})
- Output alphabet {x, y, z}

Adapted from Manning & Schuetze, Fig

Algorithms for HMMs (Thompson, FNLP)

Transition and Output Probabilities

• Transition matrix A: $a_{ii} = P(q^{j} | q^{i})$



Output matrix B:
 b_i(o) = P(o | qⁱ)
 for output o

_	X	у	Z
q ¹	.6	.1	.3
q ²	.1	.7	.2

Joint probability of (states, outputs)

- Let $\lambda = (A, B)$ be the parameters of our HMM.
- Using our new notation, given state sequence $Q = (q_1 \dots q_T)$ and output sequence $\underset{T}{O} = (o_1 \dots o_T)$, we have: $P(O, Q \mid \lambda) = \prod P(o_t \mid q_t) P(q_t \mid q_{t-1})$

t=1

Joint probability of (states, outputs)

- Let $\lambda = (A, B)$ be the parameters of our HMM.
- Using our new notation, given state sequence $Q = (q_1 \dots q_T)$ and output sequence $O = (o_1 \dots o_T)$, we have: $P(O, Q \mid \lambda) = \prod_{t=1}^{T} P(o_t \mid q_t) P(q_t \mid q_{t-1})$

• Or:
$$P(O, Q \mid \lambda) = \prod_{t=1}^{T} b_{q_t}(o_t) a_{q_{t-1}q_t}$$

Joint probability of (states, outputs)

- Let $\lambda = (A, B)$ be the parameters of our HMM.
- Using our new notation, given state sequence $Q = (q_1 \dots q_T)$ and output sequence $O = (o_1 \dots o_T)$, we have: $P(O, Q \mid \lambda) = \prod_{t=1}^{T} P(o_t \mid q_t) P(q_t \mid q_{t-1})$

• Or:
$$P(O, Q \mid \lambda) = \prod_{t=1}^{T} b_{q_t}(o_t) a_{q_{t-1}q_t}$$

• Example: $P(O = (y, z), Q = (q^{1}, q^{1}) | \lambda) = b1(y) \cdot b1(z) \cdot a_{<s>,1} \cdot a_{11}$ = (.1)(.3)(1)(.7)

Viterbi: high-level picture

- Want to find $\operatorname{argmax}_{Q}P(Q|O)$
- Intuition: the best path of length t ending in state q must include the best path of length t-1 to the previous state. So,
 - Find the best path of length t-1 to each state.
 - Consider extending each of those by 1 step, to state q.
 - Take the best of those options as the best path to state $\ensuremath{q}\xspace$.

Viterbi algorithm

- Use a **chart** to store partial results as we go
 - NxT table, where v(j,t) is the probability* of the best state sequence for $o_1 \dots o_t$ that ends in state j.

*Specifically, v(j,t) stores the max of the joint probability P($o_1...o_t, q_1... q_{t-1}, q_t=j|\lambda$) Algorithms for HMMs (Thompson, FNLP)

Viterbi algorithm

- Use a **chart** to store partial results as we go
 - NxT table, where v(j,t) is the probability* of the best state sequence for $o_1 \dots o_t$ that ends in state j.
- Fill in columns from left to right, with

 $v(j,t) = \max_{i=1}^{N} v(i,t-1) \bullet a_{ij} \bullet b_j(o_t)$

*Specifically, v(j,t) stores the max of the joint probability P($o_1...o_t, q_1... q_{t-1}, q_t=j|\lambda$) Algorithms for HMMs (Thompson, FNLP)

21

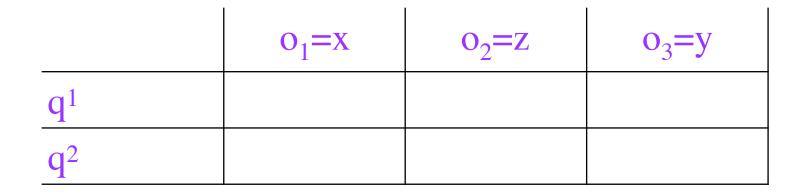
Viterbi algorithm

- Use a **chart** to store partial results as we go
 - NxT table, where v(j,t) is the probability* of the best state sequence for $o_1 \dots o_t$ that ends in state j.
- Fill in columns from left to right, with $v(j,t) = \max_{i=1}^{N} v(i,t-1) \cdot a_{ij} \cdot b_j(o_t)$
- Store a **backtrace** to show, for each cell, which state at t-1 we came from.

*Specifically, v(j,t) stores the max of the joint probability P($o_1...o_t, q_1...$ $q_{t-1}, q_t = j | \lambda$) Algorithms for HMMs (Thompson, FNLP)

Example

• Suppose O=xzy. Our initially empty table:

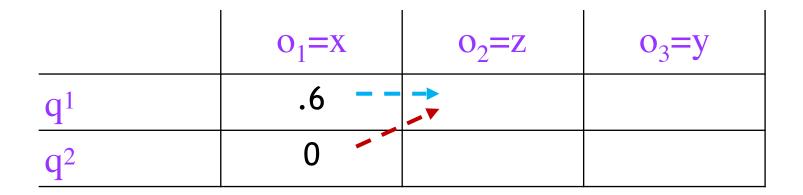


Filling the first column

	o ₁ =x	o ₂ =z	0 ₃ =y
q ¹	.6		
q ²	0		

 $v(1,1) = a_{<s>1} \bullet b1(x) = (1)(.6)$ $v(2,1) = a_{<s>2} \bullet b2(x) = (0)(.1)$

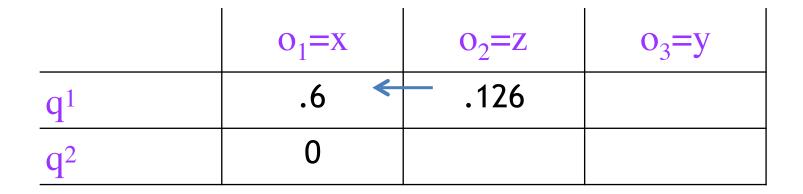
Starting the second column



$$v(1,2) = \max_{i=1}^{N} v(i,1) \bullet a_{i1} \bullet b1(z)$$

= $\max \begin{cases} v(1,1) \bullet a_{11} \bullet b_1(z) = (.6)(.7)(.3) \\ v(2,1) \bullet a_{21} \bullet b_1(z) = (0)(.5)(.3) \end{cases}$

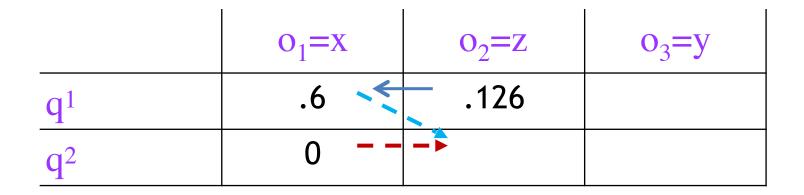
Starting the second column



$$v(1,2) = \max_{i=1}^{N} v(i,1) \bullet a_{i1} \bullet b1(z)$$

=
$$\max \begin{cases} v(1,1) \bullet a_{11} \bullet b_1(z) = (.6)(.7)(.3) \\ v(2,1) \bullet a_{21} \bullet b_1(z) = (0)(.5)(.3) \end{cases}$$

Finishing the second column



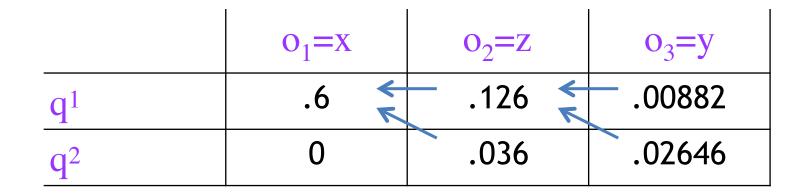
 $v(2,2) = \max_{i=1}^{N} v(i,1) \bullet a_{i2} \bullet b2(z)$ = $\max \begin{cases} v(1,1) \bullet a_{12} \bullet b_2(z) = (.6)(.3)(.2) \\ v(2,1) \bullet a_{22} \bullet b_2(z) = (0)(.5)(.2) \end{cases}$

Finishing the second column

	o ₁ =x	o ₂ =z	o ₃ =y
q ¹	.6	.126	
q ²	0	.036	

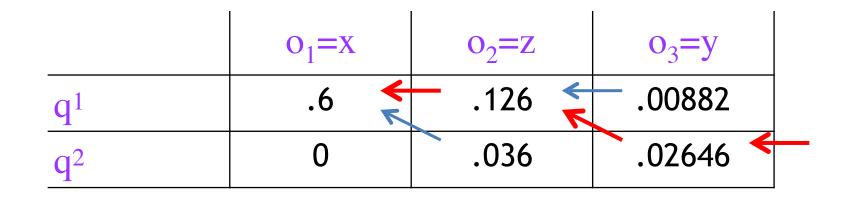
 $v(2,2) = \max_{i=1}^{N} v(i,1) \bullet a_{i2} \bullet b2(z)$ = $\max \begin{cases} v(1,1) \bullet a_{12} \bullet b_2(z) = (.6)(.3)(.2) \\ v(2,1) \bullet a_{22} \bullet b_2(z) = (0)(.5)(.2) \end{cases}$

Third column



• Exercise: make sure you get the same results!

Best Path



- Choose best final state $ax_{i=1}^{N}v(i,T)$
- Follow backtraces to find best full sequence: q¹q¹q²

HMMs: what else?

- As with probabilities in N-gram models and classification, chart probabilities get really tiny really fast, risking underflow
 - So, we use costs (negative log probabilities) instead
 - Take minimum over sum of costs, instead of maximum over product of probabilities.
- Using Viterbi, we can find the best tags for a sentence (decoding), and get .
- We might also want to
 - Compute the **likelihood** , i.e., the probability of a sentence regardless of tags (a language model!)
 - learn the best set of parameters $\lambda = (A, B)$ given only an *unannotated* corpus of sentences.

Computing the likelihood

• From probability theory, we know that

$$P(O \mid \lambda) = \sum_{Q} P(O, Q \mid \lambda)$$

- There are an exponential number of Qs.
- Again, by computing and storing partial results, we can solve efficiently.
- (Next slides show the algorithm but I'll likely skip them)

Forward algorithm

• Use a table with cells $\alpha(j,t)$: the probability of being in state after seeing $o_1 \dots o_t$ (forward probability).

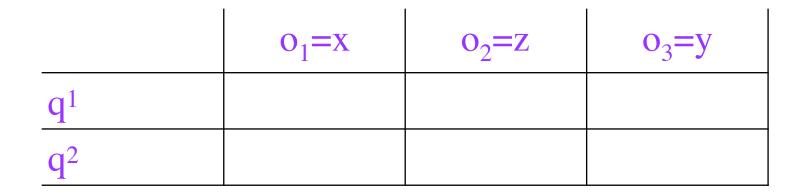
 $\alpha(j,t) = P(o1, o2, \dots ot, qt = j \mid \lambda)$

- Fill in columns from left to right, with $\alpha(j,t) = \sum_{i=1}^{N} \alpha(i,t-1) \bullet a_{ij} \bullet b_j(o_t)$
 - Same as Viterbi, but sum instead of max (and no backtrace).

Note: because there's a sum, we can't use the trick that replaces probabilitiess with costs. For implementation info, see <u>http://digital.cs.usu.edu/~cyan/CS7960/hmm-tutorial.pdf</u> and <u>http://stackoverflow.com/questions/13391625/underflow-in-forward-algorithm-for-hmms</u>

Example

• Suppose O=xzy. Our initially empty table:

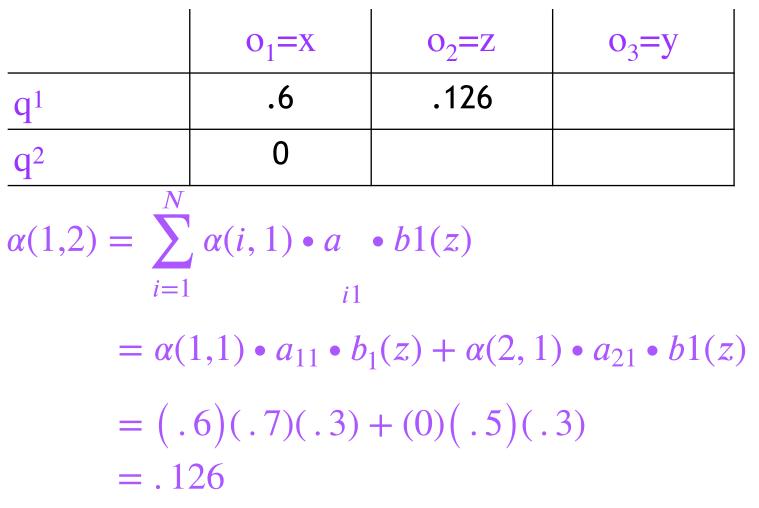


Filling the first column

	o ₁ =x	o ₂ =z	о ₃ =у
q ¹	.6		
q ²	0		

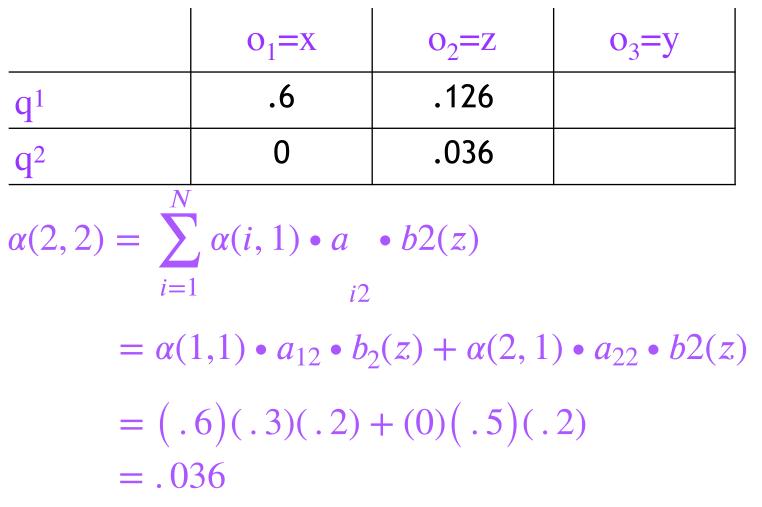
 $\alpha(1,1) = a_{<s>1} \bullet b1(x) = (1)(.6)$ $\alpha(2,1) = a_{<s>2} \bullet b2(x) = (0)(.1)$

Starting the second column



Algorithms for HMMs (Thompson, FNLP)

Finishing the second column



Algorithms for HMMs (Thompson, FNLP)

Third column and finish

	o ₁ =x	o ₂ =z	о ₃ =у
q ¹	.6	.126	.01062
q ²	0	.036	.03906

• Add up all probabilities in last column to get the probability of the entire sequence:

$$P(O \mid \lambda) = \sum_{i=1}^{N} \alpha(i, T)$$

Learning

- Given *only* the output sequence, learn the best set of parameters $\lambda = (A, B)$.
- Assume 'best' = maximum-likelihood.
- Other definitions are possible, won't discuss here.

Unsupervised learning

- Training an HMM from an annotated corpus is simple.
 - Supervised learning: we have examples labelled with the right 'answers' (here, tags): no hidden variables in training.
- Training from unannotated corpus is trickier.
 - Unsupervised learning: we have no examples labelled with the right 'answers': all we see are outputs, state sequence is hidden.

Circularity

- If we know the state sequence, we can find the best λ .
 - E.g., use MLE:

• If we know λ , we can find the best state sequence. – use Viterbi

• But we don't know either!

Expectation-maximization (EM)

Essentially, a bootstrapping algorithm.

- Initialize parameters $\lambda^{(0)}$
- At each iteration k,
 - E-step: Compute **expected counts** using $\lambda^{(k-1)}$
 - M-step: Set $\lambda^{(k)}$ using MLE on the expected counts
- Repeat until λ doesn't change (or other stopping criterion).

Expected counts??

Counting transitions from $q^i \rightarrow q^j$:

- Real counts:
 - count 1 each time we see $q^i \rightarrow q^j$ in true tag sequence.
- Expected counts:
 - With current $\boldsymbol{\lambda},$ compute probs of all possible tag sequences.
 - If sequence Q has probability p, count p for each $q^i \rightarrow q^j$ in Q.
 - Add up these fractional counts across all possible sequences.

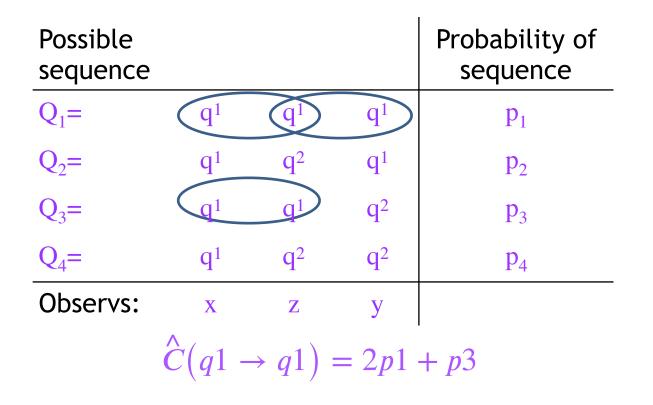
Example

Notionally, we compute expected counts as follows:

Possible sequence				Probability of sequence
Q ₁ =	\mathbf{q}^1	\mathbf{q}^1	\mathbf{q}^1	p ₁
Q ₂ =	\mathbf{q}^1	q ²	\mathbf{q}^1	p ₂
Q ₃ =	\mathbf{q}^1	\mathbf{q}^1	q^2	p ₃
Q ₄ =	\mathbf{q}^1	q ²	q^2	\mathbf{p}_4
Observs:	X	Z	У	

Example

Notionally, we compute expected counts as follows:



Forward-Backward algorithm

- As usual, avoid enumerating all possible sequences.
- Forward-Backward (Baum-Welch) algorithm computes expected counts using forward probabilities and backward probabilities:

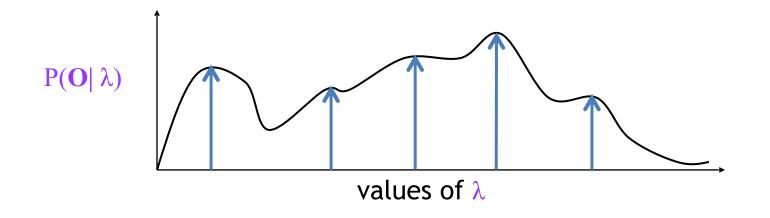
 $\beta(j,t) = P(qt = j, o_{t+1}, o_{t+2}, ..., o_T | \lambda)$

– Details, see J&M 6.5

• EM idea is much more general: can use for many latent variable models.

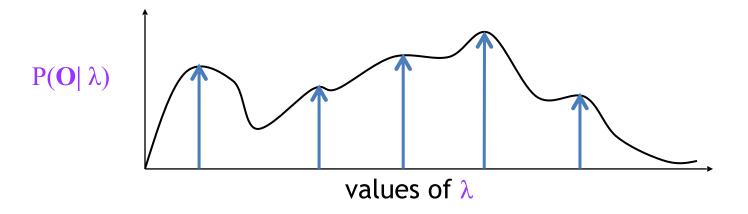
Guarantees

• EM is guaranteed to find a **local** maximum of the likelihood.



Guarantees

• EM is guaranteed to find a **local** maximum of the likelihood.



- Not guaranteed to find **global** maximum.
- Practical issues: initialization, random restarts, early stopping.

Summary

- HMM: a generative model of sentences using hidden state sequence
- Dynamic programming algorithms to compute
 - Best tag sequence given words (Viterbi algorithm)
 - Likelihood (forward algorithm)
 - Best parameters from unannotated corpus (forward-backward algorithm, an instance of EM)