Recap: HMM

» Elements of HMM:
— Set of states (tags)

. — Output alphabet (word types
FNLP Lecture 9: put alphabet (word types)
] — Start state (beginning of sentence)
AlgOI’lth ms fOI’ HMMs — State transition probabilities
— Output probabilities from each state
Shay Cohen
Based on slides by Henry Thompson and Sharon
Goldwater

11 February 2020
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More general notation Recap: HMM
 Previous lecture: « Given a sentence O =o, ..o, With tags Q=q; ...
—Sequence of tags T =t,...t, qr, compute P(0,Q) as:
T
— Sequence of words S = w,...w_ P(O, Q) = H P(o, | 4) P(q, | g_1)
« This lecture: =
—>equence of states Q =g, ...q; « But we want to find2maxo P(O]0) without
— Sequence of outputs O =0, ... o; enumerating all possible Q
—So tis now a time step, not a tag! And T is the — Use Viterbi algorithm to store partial

sequence length. computations.
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Today’s lecture

« What algorithms can we use to

— Efficiently compute the most probable tag
sequence for a given word sequence?

— Efficiently compute the likelihood for an HMM
(probability it outputs a given sequence s)?

— Learn the parameters of an HMM given
unlabelled training data?

* What are the properties of these
algorithms (complexity, convergence,
etc)?
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Tagging example
Words: <s> one dog bit </s>
Possible tags: <s> CD NN NN </s>
(ordered by NN VB VBD

frequency for
each word) PRP

» Choosing the best tag for each word independently
gives the wrong answer (<s> CD NN NN </s>).

* P(VBD|bit) < P(NN|bit), but may yield a better
sequence (<s> CD NN VB </s>)
— because P(VBD|NN) and P(</s>|VBD) are high.
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Tagging example
Words: <s> one dog bit </s>
Possible tags: <S> CD NN NN </s>
(ordered by NN VB VBD

frequency for
each word) PRP

Viterbi: intuition

Words: <s> one dog bit </s>
Possible tags: <s> CD NN NN </s>
(ordered by NN VB VBD

frequency for
each word) PRP

* Suppose we have already computed
a) The best tag sequence for <s> ... bit that ends in NN.
b) The best tag sequence for <s> ... bit that ends in VBD.

» Then, the best full sequence would be either
— sequence (a) extended to include </s>, or
— sequence (b) extended to include </s>.

Algorithms for HMMs (Thompson, FNLP) 8



Viterbi: intuition

Words: <s> one dog bit </s>
Possible tags: <S> CD NN NN </s>
(ordered by

frequency for NN VB VBD

each word) PRP

» But similarly, to get
a) The best tag sequence for <s> ... bit that ends in NN.

» We could extend one of:
— The best tag sequence for <s> ... dog that ends in NN.
— The best tag sequence for <s> ... dog that ends in VB.

* And so on...
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Viterbi: high-level picture

* Intuition: the best path of length tending in
state ¢ must include the best path of length t-1
to the previous state. (t now a time step, not a
tag). So,

— Find the best path of length t-1 to each state.

— Consider extending each of those by 1 step, to state
qg.

— Take the best of those options as the best path to
state q.
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Viterbi: high-level picture

* Intuition: the best path of length t ending in
state Q must include the best path of length t-1
to the previous state (call it P). (t now a time,
not a tag):

<S>/<S> cee

o ,/P 0/Q

* Because otherwise there must be a better path
to p that we should have used, thereby getting a
better path to Q

— Remember the Markov assumptions
» are independent of everything from <s> to Q
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Notation

Sequence of observations over time o, 0,, ..., 0;

— here, words in sentence
Vocabulary size V of possible observations

Set of possible states q!, g2, ..., gN (see note next slide)
— here, tags

A, an NxN matrix of transition probabilities
— a;: the prob of transitioning from state q' to qi. (JM3 Fig8.7)

B, an NxV matrix of output probabilities
— b,(o,): the prob of emitting o, from state q!. (M3 Fig8.8)
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Note on notation HMM example w/ new notation

« J&Muse q,, q,, ..., q, for set of states, but also
use q,, q-, ..., q; for state sequence over time.

— So, just seeing q, is ambiguous (though usually
disambiguated from context).

— I’llinstead use qi for state names, and q, for state at
time t.

— So we could have g, = qi, meaning: the state we’re in
at time tis qi.

7.
y
- States {q!, g2} (or {<s>,q!,q2})

» QOutput alphabet {x, vy, z}

Adapted from Manning & Schuetze, Fig
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Transition and Output Probabilities Joint probability of (states, outputs)

e Transition matrix A: g | « Let L =(A,B) be the parameters of our HMM.
a;; = P(gi | qi) <s> |1 0 - Using our new notation, given state sequence Q = (q; ...
q 7 3 q.) and output sequence 7Q = (0, ... 01), we have:
¢ |5 |5 P©0.0|» =]]P(o|a)P(a|d-)
=1
 Output matrix B: x |y |z
b.(0) =P(o | qi) q! 6 .1 3
for output o @ |1 |7
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Joint probability of (states, outputs)

Let . = (A, B) be the parameters of our HMM.

Using our new notation, given state sequence Q = (q, ...
¢.) and output sequence p = (0, ... o), we have:

P0,0| 4 =[] P(o/|4)P(a|a-1)
=1

T
Or: P(O’ Q | A) - H bqr(ol) a‘/r—lflr
=1

Viterbi: high-level picture

Want to find' 2" /(@ 10)

Intuition: the best path of length tending in

state g must include the best path of length -1

to the previous state. So,

— Find the best path of length t-1 to each state.

— Consider extending each of those by 1 step, to state
qg.

— Take the best of those options as the best path to
state q.
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Joint probability of (states, outputs)

Let .. = (A, B) be the parameters of our HMM.

Using our new notation, given state sequence Q = (q, ...
) and output sequence p = (0, ... o), we have:

P©0.0|» =[] P(o]|4) P(a]4-1)
t=1

T
Or: P(O’ Q | /1) - H b(h(0’> a(/z—lqz
=1

Example:
P(O = (y,z),Q = ((11,611)‘/1> = bl(y) ebl(z)ea g, *a
= (. DC3)M(T)
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Viterbi algorithm

Use a chart to store partial results as we go

— NxT table, where v(j.t) is the probability* of the best
state sequence for o,...o, that ends in state j.

*Specifically, v(j,t) stores the max of the joint probability P(o;,...0,,q;...

qt.1,qt=j |7\)
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Viterbi algorithm

» Use a chart to store partial results as we go

— NxT table, where v(j.t) is the probability* of the best
state sequence for o,...o, that ends in state j.

* Fill in columns from left to right, with

v(j.1) = maxi/\;lu(i,f— 1)eayeb,(o)

*Specifically, v(j,t) stores the max of the joint probability P(o,...0;,q;...
qt-1 ’qt=j | )\) Algorithms for HMMs (Thompson, FNLP) 21

Example

» Suppose O=xzy. Our initially empty table:

0,=X 0,=Z
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Viterbi algorithm

» Use a chart to store partial results as we go

— NxT table, where v(jt) is the probability* of the best
state sequence for o,...o, that ends in state j.

* Fill in columns from left to right, with

v(j.1) = maxllv(i,t —1)ea;+b;(0)

« Store a backtrace to show, for each cell, which
state at t-1 we came from.

*Specifically, v(j,t) stores the max of the joint probability P(o;...0;,q;...
qt-1:qt=j |A)
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Filling the first column

0,=X 0,=Z

q] .6
q2 0

v(1,1) = a g ¢ b1(x) = (1)(.6)
v(2,1) = a g, e b2(x) = (0)(. 1)
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Starting the second column

0,=X 0,=Z 0=y

q! L

A4

>
-

qZ 0

v(1,2) = maxi/\:’]U(i, 1)e a, e bl(z)

{U(l, )eayeb(z) =(.6)(.7)(.3)
= max
0(2, 1) e azy » by(z) = (0)(.5)(.3)

Algorithms for HMMs (Thompson, FNLP) 25

Finishing the second column

0,=X 0,=Z 0=y
6~ 126

~

ql
q2 0 —7

i
>

0(2,2) = max%,v(i, 1) e a_ « b2(z)

{U(l, 1) eajpeby(z) =(.6)(.3)(.2)
= max
0(2,1) ¢ axn* by(z) = (0)(.5)(.2)
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Starting the second column

0,=X 0,=Z 03=y
q! 6 ST 126
q2 0

v(1,2) = maxi]\ilu(l‘, 1)e a. e bl(z)

{U(l, Deapeb(z)=(.60(.7(.3) g
= max
0(2,1) e azy + by(z) = (0)(.5)(.3)
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Finishing the second column

0,=X 0,=Z 0=y
6_

q! .6 <[ 126

q? 0 .036

0(2,2) = max® v(i, 1) e a, «b2(z)

{U(l, D) e aipeby(z) =(.6)(.3)(.2) ¢
= max
0(2,1) ¢ axn e+ by(z) = (0)(.5)(.2)
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Third column

0,=X 0,=Z 0=y
—— <—

q! 6 2] ) 126 2] i} .00882

q? 0 .036 .02646

» Exercise: make sure you get the same results!
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HMMs: what else?

» As with probabilities in N-gram models and

29

classification, chart probabilities get really tiny really

fast, risking underflow

— S0, we use costs (negative log probabilities)
instead

— Take minimum over sum of costs, instead of
maximum over product of probabilities.

» Using Viterbi, we can find the best tags for a sentence

(decoding), and get .

* We might also want to

— Compute the likelihood , i.e., the probability of a
sentence regardless of tags (a language model!)

— learn the best set of parameters i = (A, B) given only an
unannotated corpus of sentences.

Algorithms for HMMs (Thompson, FNLP)
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Best Path
0,=X 0,=Z 05=y
q! 6 <€—\ 126 ;;: .00882
P 0 .036 02646 <

Choose best final statezax " v(i, T)

Follow backtraces to find best full sequence:
q'q'q?
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Computing the likelihood

From probability theory, we know that
P(O| 1) =) P0.0|4)
(0]
There are an exponential number of Qs.

Again, by computing and storing partial results,
we can solve efficiently.

(Next slides show the algorithm but I’ll likely
skip them)
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Forward algorithm Example

» Use a table with cells a(j.t): the probability of being in e Suppose O=xzv. Our initiallv emptv table:
state after seeing o,...o, (forward probability). PP xzy y pty

a(j,t) = P(ol,02,...0t,qt = j| 4)

0,=X 0,=2Z 05=Yy
* Fillin columns from left to right, with q!
a(j,r) = Za(i,t— l)oa,j-bj(a,) q?
i=1
— Same as Viterbi, but sum instead of max (and no backtrace).
Note: because there’s a sum, we can’t use the trick that replaces probabilitiess with
costs. For implementation info, see http://digital.cs.usu.edu/~cyan/C57960/hmm-
tutorial.pdf and http://stackoverflow.com/questions/13391625/underflow-in-
forward-algorithm-for-hmms
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Filling the first column Starting the second column
0,=X 0,=2 03=y 0,=X 0,=Z 03=y
q! .6 q! .6 126
q2 0 q2 0
N
a(1,1) = a_yy » b1(x) = (1)(.6) a(12)= ) ali,l)ea «bl(z)
i=1 il

a(2,1) =a_He b2(x) = (0)(. 1)
=a(l,1)eaj;eb(z)+ a(2,1)eay; «bl(z)

=(.6)(.D(.3)+0)(.5)(.3)
=.126
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Finishing the second column

0,=X 0,=Z 05=y
! 6 126
”: 0 .036
N
a(2,2) = z a(i,1)ea

» Given only the output sequence, learn the best

=a(l,1)eajpeby(z) + a(2,1) e ay « b2(z)

(.6)(.3)(.2)+(0)(.5)(.2)

i=1

.036
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e b2(2)

i2

Learning

set of parameters . = (A, B).

* Assume ‘best’ = maximum-likelihood.

» Other definitions are possible, won’t discuss

here.
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Third column and finish

0,=X 0,=Z 0=y
q! .6 126 .01062
q? 0 .036 .03906

N

P(O|4) = Z(x(i,T)
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i=1

Unsupervised learning

simple.

« Training an HMM from an annotated corpus is

» Add up all probabilities in last column to get the
probability of the entire sequence:

38

— Supervised learning: we have examples labelled with

the right ‘answers’ (here, tags): no hidden variables

in training.

» Training from unannotated corpus is trickier.

— Unsupervised learning: we have no examples

labelled with the right ‘answers’: all we see are
outputs, state sequence is hidden.

Algorithms for HMMs (Thompson, FNLP)
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Circularity

 |f we know the state sequence, we can find the
best ).
— E.g., use MLE:

* If we know ), we can find the best state sequence.

— use Viterbi

* But we don't know either!
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Expected counts??

Counting transitions from gi—qji:

* Real counts:
— count 1 each time we see gi—qiin true tag sequence.

» Expected counts:

— With current i, compute probs of all possible tag
sequences.

— If sequence Q has probability p, count p for each gi—qj
in Q.

— Add up these fractional counts across all possible
sequences.
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Expectation-maximization (EM)

Essentially, a bootstrapping algorithm.
* Initialize parameters L©

* At each iteration k,
— E-step: Compute expected counts using L)
— M-step: Set A\ using MLE on the expected counts

» Repeat until . doesn't change (or other stopping
criterion).
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Example

» Notionally, we compute expected counts as
follows:

Possible Probability of
sequence sequence
Q= q! q' q' P,

Q= q! q? q' P>

Q= q' q' q? Ps

Q= q' q q P,
Observs: X z y
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Example

* Notionally, we compute expected counts as

follows:
Possible Probability of
sequence sequence
Q= q' q' P
Q= qQ__ ¢ ¢ P,
Q= @ q? P3
Q= q' q? q? Py
Observs: X z y

AN
C(ql — ql) =2pl +p3
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Guarantees

» EM is guaranteed to find a local maximum of the

likelihood.

P(O| A

values of L

Algorithms for HMMs (Thompson, FNLP)
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Forward-Backward algorithm

As usual, avoid enumerating all possible sequences.

Forward-Backward (Baum-Welch) algorithm computes
expected counts using forward probabilities and
backward probabilities:

ﬁ(]? Z) — P(qt — ja 0[+]’01+27 "'0T| /1)

— Details, see J&M 6.5

EM idea is much more general: can use for many
latent variable models.
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Guarantees

EM is guaranteed to find a local maximum of the likelihood.

P(O[ )

values of L

* Not guaranteed to find global maximum.

» Practical issues: initialization, random restarts, early stopping.
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Summary

 HMM: a generative model of sentences
using hidden state sequence

» Dynamic programming algorithms to
compute
— Best tag sequence given words (Viterbi
algorithm)
— Likelihood (forward algorithm)

— Best parameters from unannotated corpus
(forward-backward algorithm, an instance of
EM)



