FNLP Lecture 9: Algorithms for HMMs

Sharon Goldwater
(Based on slides by Alex Lascarides and Sharon Goldwater)
(Alex is back next week)
13 Feb 2018

Recap: tagging

• POS tagging is a sequence labelling task.
• We can tackle it with a model (HMM) that uses two sources of information:
 – The word itself
 – The tags assigned to surrounding words
• The second source of information means we can’t just tag each word independently.

Recap: HMM

• Elements of HMM:
 – Set of states (tags)
 – Output alphabet (word types)
 – Start state (beginning of sentence)
 – State transition probabilities $P(t_i | t_{i-1})$
 – Output probabilities from each state $P(w_i | t_j)$

Tagging example

Words:
Possible tags:
(ordered by frequency for each word)

<table>
<thead>
<tr>
<th></th>
<th>one</th>
<th>dog</th>
<th>bit</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td><s></td>
<td>CD</td>
<td>NN</td>
<td>NN</td>
<td><s></td>
</tr>
<tr>
<td></td>
<td>NN</td>
<td>VB</td>
<td>VBD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PRP</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• Choosing the best tag for each word independently gives the wrong answer (<s> CD NN NN <s>).
• $P($VB | bit$) < P($NN | bit$)$, but may yield a better sequence (<s> CD NN VB <s>)
 – because $P($VBD | NN$)$ and $P($<s> | VBD$)$ are high.
Recap: HMM

• Given a sentence $S=w_1...w_n$ with tags $T=t_1...t_n$, compute $P(S,T)$ as:

$$P(S,T) = \prod_{i=1}^{n} P(w_i|t_i)P(t_i|t_{i-1})$$

• But we want to find $\text{argmax}_T P(T|S)$ without enumerating all possible T.
 - Use Viterbi algorithm to store partial computations.

Viterbi: intuition

Words:

<table>
<thead>
<tr>
<th><s></th>
<th>one</th>
<th>dog</th>
<th>bit</th>
<th></s></th>
</tr>
</thead>
<tbody>
<tr>
<td><s></td>
<td>CD</td>
<td>NN</td>
<td>NN</td>
<td></s></td>
</tr>
<tr>
<td></td>
<td>NN</td>
<td>VB</td>
<td>VBD</td>
<td></td>
</tr>
<tr>
<td></td>
<td>PRP</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Possible tags: (ordered by frequency for each word)

- Suppose we have already computed
 a) The best tag sequence for $<s> ...$ bit that ends in NN.
 b) The best tag sequence for $<s> ...$ bit that ends in VBD.

- Then, the best full sequence would be either
 – sequence (a) extended to include $</s>$, or
 – sequence (b) extended to include $</s>$.

Viterbi: high-level picture

• Intuition: the best path of length t ending in state q must include the best path of length $t-1$ to the previous state. (t now a time step, not a tag). So,
 - Find the best path of length $t-1$ to each state.
 - Consider extending each of those by 1 step, to state q.
 - Take the best of those options as the best path to state q.

• But similarly, to get
 a) The best tag sequence for $<s> ...$ bit that ends in NN.

• We could extend one of:
 – The best tag sequence for $<s> ...$ dog that ends in NN.
 – The best tag sequence for $<s> ...$ dog that ends in VB.

• And so on...
Notation

- Sequence of observations over time \(o_1, o_2, \ldots, o_T \)
 - here, words in sentence
- Vocabulary size \(V \) of possible observations
- Set of possible states \(q^1, q^2, \ldots, q^N \) (see note next slide)
 - here, tags
- \(A \), an \(N \times N \) matrix of transition probabilities
 - \(a_{ij} \): the prob of transitioning from state \(i \) to \(j \). (slide 14 of prev. lect.)
- \(B \), an \(N \times V \) matrix of output probabilities
 - \(b_i(o_t) \): the prob of emitting \(o_t \) from state \(i \). (slide 16 of prev. lect.)

Note on notation

- J&M use \(q_1, q_2, \ldots, q_N \) for set of states, but also use \(q_1, q_2, \ldots, q_T \) for state sequence over time.
 - So, just seeing \(q_1 \) is ambiguous (though usually disambiguated from context).
 - I’ll instead use \(q^i \) for state names, and \(q_t \) for state at time \(t \).
 - So we could have \(q_t = q^i \), meaning: the state we’re in at time \(t \) is \(q^i \).

HMM example w/ new notation

- A possible sequence of outputs for this HMM:
 \[z \ y \ y \ x \ y \ z \ x \ z \ z \]
- A possible sequence of states for this HMM:
 \[q^1 \ q^2 \ q^2 \ q^1 \ q^1 \ q^2 \ q^1 \ q^1 \ q^1 \]
- For these examples, \(T = 9 \), \(q_3 = q^2 \) and \(o_3 = y \)

- States \(\{q^1, q^2\} \) (or \(\{<s>, q^1, q^2\} \)): think \(NN, VB \)
- Output symbols \(\{x, y, z\} \): think \(chair, dog, help \)

Adapted from Manning & Schuetze, Fig 9.2
Transition and Output Probabilities

• Transition matrix A:

 $a_{ij} = P(q^j | q^i)$

<table>
<thead>
<tr>
<th></th>
<th>q^1</th>
<th>q^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>$<$s$></td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>q^1</td>
<td>.7</td>
<td>.3</td>
</tr>
<tr>
<td>q^2</td>
<td>.5</td>
<td>.5</td>
</tr>
</tbody>
</table>

 Ex: $P(q_t = q^2 | q_{t-1} = q^1) = .3$

• Output matrix B:

 $b_i(o) = P(o | q^i)$

<table>
<thead>
<tr>
<th></th>
<th>x</th>
<th>y</th>
<th>z</th>
</tr>
</thead>
<tbody>
<tr>
<td>q^1</td>
<td>.6</td>
<td>.1</td>
<td>.3</td>
</tr>
<tr>
<td>q^2</td>
<td>.1</td>
<td>.7</td>
<td>.2</td>
</tr>
</tbody>
</table>

 Ex: $P(o_t = y | q_t = q^1) = .1$

Joint probability of (states, outputs)

• Together A, B are the parameters of our HMM. Let $\lambda = (A,B)$.

• Using our new notation, given state sequence $Q = (q_1 ... q_T)$ and output sequence $O = (o_1 ... o_T)$, we have:

 $$P(O, Q | \lambda) = \prod_{t=1}^{T} P(o_t | q_t) P(q_t | q_{t-1})$$

• Or:

 $$P(O, Q | \lambda) = \prod_{t=1}^{T} b_{q_t}(o_t) a_{q_{t-1}q_t}$$

• Example:

 $P(O = (y, z), Q = (q^1, q^1) | \lambda) = b_1(y) \cdot b_1(z) \cdot a_{<s>, 1} \cdot a_{11}$

 $= (.1)(.3)(1)(.7)$
Viterbi: high-level picture

- Want to find $\arg\max_Q P(Q|O)$
- Intuition: the best path of length t ending in state q must include the best path of length $t-1$ to the previous state. So,
 - Find the best path of length $t-1$ to each state.
 - Consider extending each of those by 1 step, to state q.
 - Take the best of those options as the best path to state q.

Viterbi algorithm

- Use a chart to store partial results as we go
 - NxT table, where $v(j,t)$ is the probability* of the best state sequence for $o_1...o_t$ that ends in state j.

 *Specifically, $v(j,t)$ stores the max of the joint probability $P(o_1...o_t,q_1...q_{t-1},q_t=j|\lambda)$

Example

- Suppose $O=xzy$. Our initially empty table:

 $\begin{array}{|c|c|c|}
 \hline
 & o_1=x & o_2=z & o_3=y \\
 \hline
 q^1 & _ & _ & _ \\
 q^2 & _ & _ & _ \\
 \hline
 \end{array}$

 *Specifically, $v(j,t)$ stores the max of the joint probability $P(o_1...o_t,q_1...q_{t-1},q_t=j|\lambda)$
Filling the first column

<table>
<thead>
<tr>
<th></th>
<th>o_1 = x</th>
<th>o_2 = z</th>
<th>o_3 = y</th>
</tr>
</thead>
<tbody>
<tr>
<td>q^1</td>
<td>.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q^2</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$v(1,1) = a_{<s>1} \cdot b_1(x) = (1)(.6)$
$v(2,1) = a_{<s>2} \cdot b_2(x) = (0)(.1)$

Starting the second column

<table>
<thead>
<tr>
<th></th>
<th>o_1 = x</th>
<th>o_2 = z</th>
<th>o_3 = y</th>
</tr>
</thead>
<tbody>
<tr>
<td>q^1</td>
<td>.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q^2</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$v(1,2) = \max_{i=1}^N v(i, 1) \cdot a_{i1} \cdot b_1(z)$

= max \(\begin{cases} v(1,1) \cdot a_{11} \cdot b_1(z) = (.6)(.7)(.3) \\ v(2,1) \cdot a_{21} \cdot b_1(z) = (0)(.5)(.3) \end{cases} \)

Starting the second column

<table>
<thead>
<tr>
<th></th>
<th>o_1 = x</th>
<th>o_2 = z</th>
<th>o_3 = y</th>
</tr>
</thead>
<tbody>
<tr>
<td>q^1</td>
<td>.6</td>
<td>.126</td>
<td></td>
</tr>
<tr>
<td>q^2</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$v(2,1) = \max_{i=1}^N v(i, 1) \cdot a_{i1} \cdot b_1(z)$

= max \(\begin{cases} v(1,1) \cdot a_{11} \cdot b_1(z) = (.6)(.7)(.3) \\ v(2,1) \cdot a_{21} \cdot b_1(z) = (0)(.5)(.3) \end{cases} \)

Finishing the second column

<table>
<thead>
<tr>
<th></th>
<th>o_1 = x</th>
<th>o_2 = z</th>
<th>o_3 = y</th>
</tr>
</thead>
<tbody>
<tr>
<td>q^1</td>
<td>.6</td>
<td></td>
<td>.126</td>
</tr>
<tr>
<td>q^2</td>
<td>0</td>
<td>.126</td>
<td></td>
</tr>
</tbody>
</table>

$v(2,2) = \max_{i=1}^N v(i, 1) \cdot a_{i2} \cdot b_2(z)$

= max \(\begin{cases} v(1,1) \cdot a_{12} \cdot b_2(z) = (.6)(.3)(.2) \\ v(2,1) \cdot a_{22} \cdot b_2(z) = (0)(.5)(.2) \end{cases} \)
Finishing the second column

<table>
<thead>
<tr>
<th></th>
<th>$o_1 = x$</th>
<th>$o_2 = z$</th>
<th>$o_3 = y$</th>
</tr>
</thead>
<tbody>
<tr>
<td>q^1</td>
<td>.6</td>
<td>.126</td>
<td></td>
</tr>
<tr>
<td>q^2</td>
<td>0</td>
<td>.036</td>
<td></td>
</tr>
</tbody>
</table>

$$v(2,2) = \max_{i=1}^N v(i, 1) \cdot a_{i2} \cdot b_2(z)$$

$$= \max \begin{cases} v(1,1) \cdot a_{12} \cdot b_2(z) = (.6)(.3)(.2) \uparrow \\ v(2,1) \cdot a_{22} \cdot b_2(z) = (0)(.5)(.2) \end{cases}$$

Third column

<table>
<thead>
<tr>
<th></th>
<th>$o_1 = x$</th>
<th>$o_2 = z$</th>
<th>$o_3 = y$</th>
</tr>
</thead>
<tbody>
<tr>
<td>q^1</td>
<td>.6</td>
<td>.126</td>
<td>.00882</td>
</tr>
<tr>
<td>q^2</td>
<td>0</td>
<td>.036</td>
<td>.02646</td>
</tr>
</tbody>
</table>

• Exercise: make sure you get the same results!

Best Path

<table>
<thead>
<tr>
<th></th>
<th>$o_1 = x$</th>
<th>$o_2 = z$</th>
<th>$o_3 = y$</th>
</tr>
</thead>
<tbody>
<tr>
<td>q^1</td>
<td>.6</td>
<td>.126</td>
<td>.00882</td>
</tr>
<tr>
<td>q^2</td>
<td>0</td>
<td>.036</td>
<td>.02646</td>
</tr>
</tbody>
</table>

• Choose best final state: $\max_{i=1}^N v(i, T)$
• Follow backtraces to find best full sequence: $q^1q^1q^2$

Implementation and efficiency

• For sequence length T with N possible tags,
 – Enumeration takes $O(N^T)$ time and $O(T)$ space.
 – Viterbi takes $O(N^2T)$ time and $O(NT)$ space.
 – Viterbi is exhaustive: further speedups might be had using methods that prune the search space.

• As with N-gram models, chart probs get really tiny really fast, causing underflow.
 – So, we use costs (neg log probs) instead.
 – Take minimum over sum of costs, instead of maximum over product of probs.
HMMs: what else?

- Using Viterbi, we can find the best tags for a sentence (decoding), and get $P(O, Q|\lambda)$.

- We might also want to
 - Compute the likelihood $P(O|\lambda)$, i.e., the probability of a sentence regardless of its tags (a language model!)
 - learn the best set of parameters $\lambda = (A, B)$ given only an unannotated corpus of sentences.

Computing the likelihood

- From probability theory, we know that
 $$P(O|\lambda) = \sum_{Q} P(O, Q|\lambda)$$

- There are an exponential number of Qs.

- Again, by computing and storing partial results, we can solve efficiently.

- (Next slides show the algorithm but I’ll likely skip them because so similar to Viterbi!)

Forward algorithm

- Use a table with cells $\alpha(j,t)$: the probability of being in state j after seeing $o_1...o_t$ (forward probability).

 $$\alpha(j, t) = P(o_1, o_2, ... o_t, q_t = j|\lambda)$$

- Fill in columns from left to right, with

 $$\alpha(j, t) = \sum_{i=1}^{N} \alpha(i, t - 1) \cdot a_{ij} \cdot b_j(o_t)$$

 - Same as Viterbi, but sum instead of max (and no backtrace).

Example

- Suppose $O=xzy$. Our initially empty table:

<table>
<thead>
<tr>
<th></th>
<th>$o_1=x$</th>
<th>$o_2=z$</th>
<th>$o_3=y$</th>
</tr>
</thead>
<tbody>
<tr>
<td>q^1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>q^2</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: because there’s a sum, we can’t use the trick that replaces probs with costs. For implementation info, see http://digital.cs.usu.edu/~cyan/CS7960/hmm-tutorial.pdf and http://stackoverflow.com/questions/13391625/underflow-in-forward-algorithm-for-hmms.
Filling the first column

<table>
<thead>
<tr>
<th></th>
<th>o_1=x</th>
<th>o_2=z</th>
<th>o_3=y</th>
</tr>
</thead>
<tbody>
<tr>
<td>q^1</td>
<td>.6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q^2</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[\alpha(1,1) = a_{<s>_1} \cdot b_1(x) = (1)(.6) \]
\[\alpha(2,1) = a_{<s>_2} \cdot b_2(x) = (0)(.1) \]

Starting the second column

<table>
<thead>
<tr>
<th></th>
<th>o_1=x</th>
<th>o_2=z</th>
<th>o_3=y</th>
</tr>
</thead>
<tbody>
<tr>
<td>q^1</td>
<td>.6</td>
<td>.126</td>
<td></td>
</tr>
<tr>
<td>q^2</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[\alpha(1,2) = \sum_{i=1}^{N} \alpha(i, 1) \cdot a_{i1} \cdot b_1(z) \]
\[= \alpha(1,1) \cdot a_{11} \cdot b_1(z) + \alpha(2,1) \cdot a_{21} \cdot b_1(z) \]
\[= (.6)(.7)(.3) + (0)(.5)(.3) \]
\[= .126 \]

Finishing the second column

<table>
<thead>
<tr>
<th></th>
<th>o_1=x</th>
<th>o_2=z</th>
<th>o_3=y</th>
</tr>
</thead>
<tbody>
<tr>
<td>q^1</td>
<td>.6</td>
<td>.126</td>
<td></td>
</tr>
<tr>
<td>q^2</td>
<td>0</td>
<td>.036</td>
<td></td>
</tr>
</tbody>
</table>

\[\alpha(2,2) = \sum_{i=1}^{N} \alpha(i, 1) \cdot a_{i2} \cdot b_2(z) \]
\[= \alpha(1,1) \cdot a_{12} \cdot b_2(z) + \alpha(2,1) \cdot a_{22} \cdot b_2(z) \]
\[= (.6)(.3)(.2) + (0)(.5)(.2) \]
\[= .036 \]

Third column and finish

<table>
<thead>
<tr>
<th></th>
<th>o_1=x</th>
<th>o_2=z</th>
<th>o_3=y</th>
</tr>
</thead>
<tbody>
<tr>
<td>q^1</td>
<td>.6</td>
<td>.126</td>
<td>.01062</td>
</tr>
<tr>
<td>q^2</td>
<td>0</td>
<td>.036</td>
<td>.03906</td>
</tr>
</tbody>
</table>

- Add up all probabilities in last column to get the probability of the entire sequence:

\[P(O|\lambda) = \sum_{i=1}^{N} \alpha(i, T) \]
Learning

• Given only the output sequence, learn the best set of parameters $\lambda = (A, B)$.

• Assume ‘best’ = maximum-likelihood.

• Other definitions are possible, won’t discuss here.

Unsupervised learning

• Training an HMM from an annotated corpus is simple.
 – Supervised learning: we have examples labelled with the right ‘answers’ (here, tags): no hidden variables in training.

• Training from unannotated corpus is trickier.
 – Unsupervised learning: we have no examples labelled with the right ‘answers’: all we see are outputs, state sequence is hidden.

Circularity

• If we know the state sequence, we can find the best λ.
 – E.g., use MLE: $P(q_i|q_j) = \frac{c(q_i \rightarrow q_j)}{c(q_i)}$

• If we know λ, we can find the best state sequence.
 – use Viterbi

• But we don't know either!

Expectation-maximization (EM)

As in spelling correction, we can use EM to bootstrap, iteratively updating the parameters and hidden variables.

• Initialize parameters $\lambda^{(0)}$

• At each iteration k,
 – E-step: Compute expected counts using $\lambda^{(k-1)}$
 – M-step: Set $\lambda^{(k)}$ using MLE on the expected counts

• Repeat until λ doesn't change (or other stopping criterion).
Expected counts?

Counting transitions from $q^i \rightarrow q^j$:

- **Real counts:**
 - count 1 each time we see $q^i \rightarrow q^j$ in true tag sequence.

- **Expected counts:**
 - With current λ, compute probs of all possible tag sequences.
 - If sequence Q has probability p, count p for each $q^i \rightarrow q^j$ in Q.
 - Add up these fractional counts across all possible sequences.

Example

- Notionally, we compute expected counts as follows:

<table>
<thead>
<tr>
<th>Possible sequence</th>
<th>Probability of sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Q_1 =$</td>
<td>q^1</td>
</tr>
<tr>
<td>$Q_2 =$</td>
<td>q^1</td>
</tr>
<tr>
<td>$Q_3 =$</td>
<td>q^1</td>
</tr>
<tr>
<td>$Q_4 =$</td>
<td>q^1</td>
</tr>
</tbody>
</table>

Observs: x z y

\[\hat{C}(q^1 \rightarrow q^1) = 2p_1 + p_3 \]

Forward-Backward algorithm

- As usual, avoid enumerating all possible sequences.

- **Forward-Backward** (Baum-Welch) algorithm computes expected counts using forward probabilities and **backward probabilities**:

 \[\beta(j, t) = P(q_t = j, o_{t+1}, o_{t+2}, \ldots o_T | \lambda) \]

 - Details, see J&M 6.5

- EM idea is much more general: can use for many latent variable models.
Guarantees

- EM is guaranteed to find a **local** maximum of the likelihood.

- Not guaranteed to find **global** maximum.

- Practical issues: initialization, random restarts, early stopping. Fact is, it doesn’t work well for learning POS taggers!

Summary

- HMM: a generative model of sentences using hidden state sequence

- Dynamic programming algorithms to compute
 - Best tag sequence given words (Viterbi algorithm)
 - Likelihood (forward algorithm)
 - Best parameters from unannotated corpus (forward-backward algorithm, an instance of EM)