Foundations of Natural Language Processing
Lecture 4
Language Models: Evaluation and Smoothing

Alex Lascarides
(Slides based on those from Alex Lascarides, Sharon Goldwater and Philipp Koehn)
25 January 2019

Recap: Language models
- Language models tell us $P(\vec{w}) = P(w_1 \ldots w_n)$: How likely to occur is this sequence of words?
Roughly: Is this sequence of words a “good” one in my language?
- LMs are used as a component in applications such as speech recognition, machine translation, and predictive text completion.
- To reduce sparse data, N-gram LMs assume words depend only on a fixed-length history, even though we know this isn’t true.

Evaluating a language model
- Intuitively, a trigram model captures more context than a bigram model, so should be a “better” model.
- That is, it should more accurately predict the probabilities of sentences.
- But how can we measure this?

Two types of evaluation in NLP
- **Extrinsic**: measure performance on a downstream application.
 - For LM, plug it into a machine translation/ASR/etc system.
 - The most reliable evaluation, but can be time-consuming.
 - And of course, we still need an evaluation measure for the downstream system!
- **Intrinsic**: design a measure that is inherent to the current task.
 - Can be much quicker/easier during development cycle.
 - But not always easy to figure out what the right measure is: ideally, one that correlates well with extrinsic measures.

Let’s consider how to define an intrinsic measure for LMs.
Entropy

- Definition of the **entropy** of a random variable X:
 \[H(X) = \sum_x -P(x) \log_2 P(x) \]
- Intuitively: a measure of uncertainty/disorder
- Also: the expected value of $-\log_2 P(X)$

Entropy Example

One event (outcome)

\[P(a) = 1 \quad H(X) = -1 \log_2 1 = 0 \]

Entropy Example

2 equally likely events:

\[P(a) = 0.5 \quad P(b) = 0.5 \]
\[H(X) = -0.5 \log_2 0.5 - 0.5 \log_2 0.5 = -\log_2 0.5 = 1 \]

Entropy Example

4 equally likely events:

\[P(a) = 0.25 \quad P(b) = 0.25 \quad P(c) = 0.25 \quad P(d) = 0.25 \]
\[H(X) = -0.25 \log_2 0.25 - 0.25 \log_2 0.25 - 0.25 \log_2 0.25 - 0.25 \log_2 0.25 \]
\[= -\log_2 0.25 = 2 \]
Entropy Example

3 equally likely events and one more likely than the others:

\[
P(a) = 0.7
\]
\[
P(b) = 0.1
\]
\[
P(c) = 0.1
\]
\[
P(d) = 0.1
\]

\[
H(X) = -0.7 \log_2 0.7 - 0.1 \log_2 0.1
\]
\[
= -0.7 \log_2 0.7 - 0.1 \log_2 0.1
\]
\[
= -(0.7)(-0.5146) - (0.3)(-3.3219)
\]
\[
= 0.36020 + 0.99658
\]
\[
= 1.35678
\]

Entropy as y/n questions

How many yes-no questions (bits) do we need to find out the outcome?

- Uniform distribution with \(2^n\) outcomes: \(n\) yes-no questions.
Entropy as encoding sequences

• Assume that we want to encode a sequence of events X.

• Each event is encoded by a sequence of bits, we want to use as few bits as possible.

• For example
 – Coin flip: heads = 0, tails = 1
 – 4 equally likely events: $a = 00$, $b = 01$, $c = 10$, $d = 11$
 – 3 events, one more likely than others: $a = 0$, $b = 10$, $c = 11$
 – Morse code: e has shorter code than q

• Average number of bits needed to encode $X \geq$ entropy of X

The Entropy of English

• Given the start of a text, can we guess the next word?

• For humans, the measured entropy is only about 1.3.
 – Meaning: on average, given the preceding context, a human would need only 1.3 y/n questions to determine the next word.
 – This is an upper bound on the true entropy, which we can never know (because we don’t know the true probability distribution).

• But what about N-gram models?

Cross-entropy

• Our LM estimates the probability of word sequences.

• A good model assigns high probability to sequences that actually have high probability (and low probability to others).

• Put another way, our model should have low uncertainty (entropy) about which word comes next.

• We can measure this using cross-entropy.

• Note that cross-entropy \geq entropy: our model’s uncertainty can be no less than the true uncertainty.

Computing cross-entropy

• For $w_1 \ldots w_n$ with large n, per-word cross-entropy is well approximated by:

$$H_M(w_1 \ldots w_n) = -\frac{1}{n} \log_2 P_M(w_1 \ldots w_n)$$

• This is just the average negative log prob our model assigns to each word in the sequence. (i.e., normalized for sequence length).

• Lower cross-entropy \Rightarrow model is better at predicting next word.
Cross-entropy example

Using a bigram model from Moby Dick, compute per-word cross-entropy of I spent three years before the mast (here, without using end-of-sentence padding):

$$\begin{align*}
-\frac{1}{n} &\left(\lg_2(P(I)) + \lg_2(P(\text{spent}|I)) + \lg_2(P(\text{three}|\text{spent})) + \lg_2(P(\text{years}|\text{three})) \\
&\quad + \lg_2(P(\text{before}|\text{years})) + \lg_2(P(\text{the}|\text{before})) + \lg_2(P(\text{mast}|\text{the})) \right) \\
&= -\frac{1}{7}(-6.9381 - 11.0546 - 3.1699 - 4.2362 - 5.0 - 2.4426 - 8.4246) \\
&= -\frac{1}{7}(41.2660) \\
&\approx 6
\end{align*}$$

• Per-word cross-entropy of the unigram model is about 11.

• So, unigram model has about 5 bits more uncertainty per word than bigram model. But, what does that mean?

Data compression

• If we designed an optimal code based on our bigram model, we could encode the entire sentence in about 42 bits.

• A code based on our unigram model would require about 77 bits.

• ASCII uses an average of 24 bits per word (168 bits total)!

• So better language models can also give us better data compression: as elaborated by the field of information theory.

Perplexity

• LM performance is often reported as perplexity rather than cross-entropy.

• Perplexity is simply $2^{\text{cross-entropy}}$

• The average branching factor at each decision point, if our distribution were uniform.

• So, 6 bits cross-entropy means our model perplexity is $2^6 = 64$: equivalent uncertainty to a uniform distribution over 64 outcomes.

Interpreting these measures

I measure the cross-entropy of my LM on some corpus as 5.2. Is that good?
Interpreting these measures

I measure the cross-entropy of my LM on some corpus as 5.2. Is that good?

- No way to tell! Cross-entropy depends on both the model and the corpus.
 - Some language is simply more predictable (e.g. casual speech vs academic writing).
 - So lower cross-entropy could mean the corpus is “easy”, or the model is good.

- We can only compare different models on the same corpus.

- Should we measure on training data or held-out data? Why?

Sparse data, again

Suppose now we build a trigram model from Moby Dick and evaluate the same sentence.

- But I spent three never occurs, so \(P_{\text{MLE}}(\text{three} | \text{I spent}) = 0 \)

- which means the cross-entropy is infinite.

- Basically right: our model says I spent three should never occur, so our model is infinitely wrong/surprised when it does!

- Even with a unigram model, we will run into words we never saw before. So even with short \(N \)-grams, we need better ways to estimate probabilities from sparse data.

Smoothing

- The flaw of MLE: it estimates probabilities that make the training data maximally probable, by making everything else (unseen data) minimally probable.

- **Smoothing** methods address the problem by stealing probability mass from seen events and reallocating it to unseen events.

- Lots of different methods, based on different kinds of assumptions. We will discuss just a few.

Add-One (Laplace) Smoothing

- Just pretend we saw everything one more time than we did.

\[
P_{\text{ML}}(w_i | w_{i-2}, w_{i-1}) = \frac{C(w_{i-2}, w_{i-1}, w_i)}{C(w_{i-2}, w_{i-1})}
\]

\[\Rightarrow\]

\[
P_{+1}(w_i | w_{i-2}, w_{i-1}) = \frac{C(w_{i-2}, w_{i-1}, w_i) + 1}{C(w_{i-2}, w_{i-1})}
\]
Add-One (Laplace) Smoothing

- Just pretend we saw everything one more time than we did.
 \[
P_{ML}(w_i|w_{i-2},w_{i-1}) = \frac{C(w_{i-2},w_{i-1},w_i)}{C(w_{i-2},w_{i-1})}
 \]
 \[
 \Rightarrow P_{+1}(w_i|w_{i-2},w_{i-1}) = \frac{C(w_{i-2},w_{i-1},w_i) + 1}{C(w_{i-2},w_{i-1})}
 \]

- NO! Sum over possible \(w_i\) (in vocabulary \(V\)) must equal 1:
 \[
 \sum_{w_i \in V} P(w_i|w_{i-2},w_{i-1}) = 1
 \]

- If increasing the numerator, must change denominator too.

Add-one Smoothing: normalization

- We want:
 \[
 \sum_{w_i \in V} C(w_{i-2},w_{i-1},w_i) + 1\]
 \[
 \sum_{w_i \in V} C(w_{i-2},w_{i-1}) + 1
 \]
 \[
 = C(w_{i-2},w_{i-1}) + x
 \]

- Solve for \(x\):
 \[
 \sum_{w_i \in V} C(w_{i-2},w_{i-1},w_i) + v
 \]
 \[
 = C(w_{i-2},w_{i-1}) + v
 \]
 \[
 \Rightarrow v = x
 \]

where \(v = \text{vocabulary size}\).

Add-one example (1)

- *Moby Dick* has one trigram that begins with I spent (it’s I spent in) and the vocabulary size is 17231.

 - Comparison of MLE vs Add-one probability estimates:
 \[
 \begin{array}{c|cc}
 & \text{MLE} & +1 \text{ Estimate} \\
 \hline
 P(\text{three} \mid \text{I spent}) & 0 & 0.00006 \\
 \hat{P}(\text{in} \mid \text{I spent}) & 1 & 0.0001
 \end{array}
 \]

- \(\hat{P}(\text{in} \mid \text{I spent})\) seems very low, especially since in is a very common word. But can we find better evidence that this method is flawed?

Add-one example (2)

- Suppose we have a more common bigram \(w_1, w_2\) that occurs 100 times, 10 of which are followed by \(w_3\).

 \[
 \begin{array}{c|cc}
 & \text{MLE} & +1 \text{ Estimate} \\
 \hline
 P(w_3 \mid w_1, w_2) & 10 & 11 \text{/} 17331 \approx 0.0006
 \end{array}
 \]

 - Shows that the very large vocabulary size makes add-one smoothing steal way too much from seen events.

 - In fact, MLE is pretty good for frequent events, so we shouldn’t want to change these much.
Add-\(\alpha\) (Lidstone) Smoothing

- We can improve things by adding \(\alpha < 1\).

\[
P_{+\alpha}(w_i|w_{i-1}) = \frac{C(w_{i-1}, w_i) + \alpha}{C(w_{i-1}) + \alpha v}
\]

- Like Laplace, assumes we know the vocabulary size in advance.
- But if we don’t, can just add a single “unknown” (UNK) item, and use this for all unknown words during testing.
- Then: how to choose \(\alpha\)?

Better smoothing: Good-Turing

- Previous methods changed the denominator, which can have big effects even on frequent events.
- Good-Turing changes the numerator. Think of it like this:
 - MLE divides count \(c\) of \(N\)-gram by count \(n\) of history:
 \[
P_{\text{ML}} = \frac{c}{n}
 \]
 - Good-Turing uses adjusted counts \(c^*\) instead:
 \[
P_{\text{GT}} = \frac{c^*}{n}
 \]

Optimizing \(\alpha\) (and other model choices)

- Use a three-way data split: training set (80-90%), held-out (or development) set (5-10%), and test set (5-10%)
 - Train model (estimate probabilities) on training set with different values of \(\alpha\)
 - Choose the \(\alpha\) that minimizes cross-entropy on development set
 - Report final results on test set.

- More generally, use dev set for evaluating different models, debugging, and optimizing choices. Test set simulates deployment, use it only once!
- Avoids overfitting to the training set and even to the test set.

Good-Turing in Detail

- Push every probability total down to the count class below.
- Each count is reduced slightly (Zipf): we’re discounting!

<table>
<thead>
<tr>
<th>(c)</th>
<th>(N_c)</th>
<th>(P_c)</th>
<th>(P_c,[\text{total}])</th>
<th>(c^*)</th>
<th>(P_{*c})</th>
<th>(P_{*c},[\text{total}])</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>(N_0)</td>
<td>0</td>
<td>0</td>
<td>(N_0)</td>
<td>0</td>
<td>(N_0)</td>
</tr>
<tr>
<td>1</td>
<td>(N_1)</td>
<td>(\frac{1}{N})</td>
<td>(\frac{N_1}{N})</td>
<td>(\frac{N_1}{N})</td>
<td>(\frac{N_1}{N})</td>
<td>(\frac{N_1}{N})</td>
</tr>
<tr>
<td>2</td>
<td>(N_2)</td>
<td>(\frac{2}{N})</td>
<td>(\frac{2N_2}{N})</td>
<td>(\frac{2N_2}{N})</td>
<td>(\frac{2N_2}{N})</td>
<td>(\frac{2N_2}{N})</td>
</tr>
</tbody>
</table>

- \(c\): count
 - \(N_c\): number of different items with count \(c\)
 - \(P_c\): MLE estimate of prob. of that item
 - \(P_c\,[\text{total}]\): MLE total probability mass for all items with that count.
 - \(c^*\): Good-Turing smoothed version of the count
 - \(P_{*c}\) and \(P_{*c}\,[\text{total}]\): Good-Turing versions of \(P_c\) and \(P_c\,[\text{total}]\)
Some Observations

• Basic idea is to arrange the discounts so that the amount we add to the total probability in row 0 is matched by all the discounting in the other rows.

• Note that we only know N_0 if we actually know what’s missing.

• And we can’t always estimate what words are missing from a corpus.

• But for bigrams, we often assume $N_0 = V^2 - N,$ where V is the different (observed) words in the corpus.

Good-Turing Smoothing: The Formulae

Good-Turing discount depends on (real) adjacent count:

$$c^* = \frac{(c + 1) \frac{N_{c+1}}{N_c}}{N_{c+1}}$$

$$P_{c^*} = \frac{N_{c+1}}{N_c} \frac{c^*}{(c+1) \frac{N_{c+1}}{N_c}}$$

• Since counts tend to go down as c goes up, the multiplier is $< 1.$

• The sum of all discounts is $\frac{N_1}{N_0}.$ We need it to be, given that this is our GT count for row 0!

Good-Turing for 2-Grams in Europarl

<table>
<thead>
<tr>
<th>Count</th>
<th>Count of counts</th>
<th>Adjusted count</th>
<th>Test count</th>
</tr>
</thead>
<tbody>
<tr>
<td>c</td>
<td>N_c</td>
<td>c^*</td>
<td>t_c</td>
</tr>
<tr>
<td>0</td>
<td>7,514,941,065</td>
<td>0.00015</td>
<td>0.00016</td>
</tr>
<tr>
<td>1</td>
<td>1,132,844</td>
<td>0.46539</td>
<td>0.46235</td>
</tr>
<tr>
<td>2</td>
<td>263,611</td>
<td>1.40679</td>
<td>1.39946</td>
</tr>
<tr>
<td>3</td>
<td>123,615</td>
<td>2.38767</td>
<td>2.34307</td>
</tr>
<tr>
<td>4</td>
<td>73,788</td>
<td>3.33753</td>
<td>3.35202</td>
</tr>
<tr>
<td>5</td>
<td>49,254</td>
<td>4.36967</td>
<td>4.35234</td>
</tr>
<tr>
<td>6</td>
<td>35,869</td>
<td>5.32928</td>
<td>5.33762</td>
</tr>
<tr>
<td>7</td>
<td>21,693</td>
<td>6.43798</td>
<td>6.50748</td>
</tr>
<tr>
<td>8</td>
<td>14,880</td>
<td>7.31304</td>
<td>7.1927</td>
</tr>
<tr>
<td>10</td>
<td>4,546</td>
<td>19.54487</td>
<td>18.95948</td>
</tr>
</tbody>
</table>

t_c are average counts of bigrams in test set that occurred c times in corpus: fairly close to estimate $c^*.$

Good-Turing justification: 0-count items

• Estimate the probability that the next observation is previously unseen (i.e., will have count 1 once we see it)

$$P(\text{unseen}) = \frac{N_1}{n}$$

This part uses MLE!

• Divide that probability equally amongst all unseen events

$$P_{\text{GT}} = \frac{1}{N_0} \frac{N_1}{n} \Rightarrow c^* = \frac{N_1}{N_0}$$
Good-Turing justification: 1-count items

- Estimate the probability that the next observation was seen once before (i.e., will have count 2 once we see it)

\[P(\text{once before}) = \frac{2N_2}{n} \]

- Divide that probability equally amongst all 1-count events

\[P_{GT} = \frac{1}{N_2} \cdot \frac{2N_2}{n} \Rightarrow c^* = \frac{2N_2}{N_1} \]

- Same thing for higher count items

Summary

- We can measure the relative goodness of LMs on the same corpus using cross-entropy: how well does the model predict the next word?

- We need smoothing to deal with unseen \(N \)-grams.

- Add-1 and Add-\(\alpha \) are simple, but not very good.

- Good-Turing is more sophisticated, yields better models, but we’ll see even better methods next time.