Recap: Language models

- **Language models** tell us $P(\vec{w}) = P(w_1 \ldots w_n)$: How likely to occur is this sequence of words?
 Roughly: Is this sequence of words a “good” one in my language?

- LMs are used as a component in applications such as speech recognition, machine translation, and predictive text completion.

- To reduce sparse data, N-gram LMs assume words depend only on a fixed-length history, even though we know this isn’t true.

Evaluating a language model

- Intuitively, a trigram model captures more context than a bigram model, so should be a “better” model.

- That is, it should more accurately predict the probabilities of sentences.

- But how can we measure this?

Two types of evaluation in NLP

- **Extrinsic**: measure performance on a downstream application.
 - For LM, plug it into a machine translation/ASR/etc system.
 - The most reliable evaluation, but can be time-consuming.
 - And of course, we still need an evaluation measure for the downstream system!

- **Intrinsic**: design a measure that is inherent to the current task.
 - Can be much quicker/easier during development cycle.
 - But not always easy to figure out what the right measure is: ideally, one that correlates well with extrinsic measures.

Let’s consider how to define an intrinsic measure for LMs.
Entropy

- Definition of the *entropy* of a random variable X:

 $$H(X) = \sum_{x} -P(x) \log_2 P(x)$$

- Intuitively: a measure of uncertainty/disorder

- Also: the expected value of $-\log_2 P(X)$

Entropy Example

One event (outcome)

$$P(a) = 1 \quad H(X) = -1 \log_2 1 = 0$$

Entropy Example

2 equally likely events:

- $P(a) = 0.5$
- $P(b) = 0.5$

$$H(X) = -0.5 \log_2 0.5 - 0.5 \log_2 0.5 = -\log_2 0.5 = 1$$

Entropy Example

4 equally likely events:

- $P(a) = 0.25$
- $P(b) = 0.25$
- $P(c) = 0.25$
- $P(d) = 0.25$

$$H(X) = -0.25 \log_2 0.25 - 0.25 \log_2 0.25 - 0.25 \log_2 0.25 - 0.25 \log_2 0.25 = -\log_2 0.25 = 2$$
Entropy Example

3 equally likely events and one more likely than the others:

\[
P(a) = 0.7 \\
P(b) = 0.1 \\
P(c) = 0.1 \\
P(d) = 0.1
\]

\[
H(X) = -0.7 \log_2 0.7 - 0.1 \log_2 0.1 \\
- 0.1 \log_2 0.1 - 0.1 \log_2 0.1 \\
= -0.7 \log_2 0.7 - 0.3 \log_2 0.1 \\
= -(0.7)(-0.5146) - (0.3)(-3.3219) \\
= 0.36020 + 0.99658 \\
= 1.35678
\]

Entropy as y/n questions

How many yes-no questions (bits) do we need to find out the outcome?

- Uniform distribution with \(2^n\) outcomes: \(n\) q’s.

- Other cases: entropy is the average number of questions per outcome in a (very) long sequence of outcomes, where questions can consider multiple outcomes at once.
Entropy as encoding sequences

- Assume that we want to encode a sequence of events X.
- Each event is encoded by a sequence of bits, we want to use as few bits as possible.
- For example
 - Coin flip: heads = 0, tails = 1
 - 4 equally likely events: $a = 00$, $b = 01$, $c = 10$, $d = 11$
 - 3 events, one more likely than others: $a = 0$, $b = 10$, $c = 11$
 - Morse code: e has shorter code than q
- Average number of bits needed to encode $X \geq$ entropy of X

Cross-entropy

- Our LM estimates the probability of word sequences.
- A good model assigns high probability to sequences that actually have high probability (and low probability to others).
- Put another way, our model should have low uncertainty (entropy) about which word comes next.
- We can measure this using cross-entropy.
- Note that cross-entropy \geq entropy: our model’s uncertainty can be no less than the true uncertainty.

The Entropy of English

- Given the start of a text, can we guess the next word?
- For humans, the measured entropy is only about 1.3.
 - Meaning: on average, given the preceding context, a human would need only 1.3 y/n questions to determine the next word.
 - This is an upper bound on the true entropy, which we can never know (because we don’t know the true probability distribution).
- But what about N-gram models?

Computing cross-entropy

- For $w_1 \ldots w_n$ with large n, per-word cross-entropy is well approximated by:
 $$H_M(w_1 \ldots w_n) = -\frac{1}{n} \log_2 P_M(w_1 \ldots w_n)$$
- This is just the average negative log prob our model assigns to each word in the sequence. (i.e., normalized for sequence length).
- Lower cross-entropy \Rightarrow model is better at predicting next word.
Cross-entropy example

Using a bigram model from Moby Dick, compute per-word cross-entropy of *I spent three years before the mast* (here, without using end-of-sentence padding):

$$\frac{1}{7}(-\lg_2(P(I)) + \lg_2(P(\text{spent}|I)) + \lg_2(P(\text{three}|\text{spent})) + \lg_2(P(\text{years}|\text{three}))
\quad + \lg_2(P(\text{before}|\text{years})) + \lg_2(P(\text{the}|\text{before})) + \lg_2(P(\text{mast}|\text{the})))$$

$$= -\frac{1}{7}(-6.9381 - 11.0546 - 3.1699 - 4.2362 - 5.0 - 2.4426 - 8.4246)$$

$$= -\frac{1}{7}(41.2660)$$

$$\approx 6$$

- Per-word cross-entropy of the **unigram** model is about 11.

- So, unigram model has about 5 bits more uncertainty per word than bigram model. But, what does that mean?

Data compression

- If we designed an optimal code based on our bigram model, we could encode the entire sentence in about 42 bits.

- A code based on our unigram model would require about 77 bits.

- ASCII uses an average of 24 bits per word (168 bits total)!

- So better language models can also give us better data compression: as elaborated by the field of **information theory**.

Perplexity

- LM performance is often reported as **perplexity** rather than cross-entropy.

- Perplexity is simply $2^{\text{cross-entropy}}$

- The average branching factor at each decision point, if our distribution were uniform.

- So, 6 bits cross-entropy means our model perplexity is $2^6 = 64$: equivalent uncertainty to a uniform distribution over 64 outcomes.

Interpreting these measures

I measure the cross-entropy of my LM on some corpus as 5.2. Is that good?
Interpreting these measures

I measure the cross-entropy of my LM on some corpus as 5.2. Is that good?

• No way to tell! Cross-entropy depends on both the model and the corpus.
 – Some language is simply more predictable (e.g. casual speech vs academic writing).
 – So lower cross-entropy could mean the corpus is “easy”, or the model is good.

• We can only compare different models on the same corpus.

• Should we measure on training data or held-out data? Why?

Sparse data, again

Suppose now we build a trigram model from Moby Dick and evaluate the same sentence.

• But I spent three never occurs, so $P_{MLE}(\text{three} \mid \text{I spent}) = 0$

• which means the cross-entropy is infinite.

• Basically right: our model says I spent three should never occur, so our model is infinitely wrong/surprised when it does!

• Even with a unigram model, we will run into words we never saw before. So even with short N-grams, we need better ways to estimate probabilities from sparse data.

Smoothing

• The flaw of MLE: it estimates probabilities that make the training data maximally probable, by making everything else (unseen data) minimally probable.

• Smoothing methods address the problem by stealing probability mass from seen events and reallocating it to unseen events.

• Lots of different methods, based on different kinds of assumptions. We will discuss just a few.

Add-One (Laplace) Smoothing

• Just pretend we saw everything one more time than we did.

$$P_{ML}(w_i \mid w_{i-2}, w_{i-1}) = \frac{C(w_{i-2}, w_{i-1}, w_i)}{C(w_{i-2}, w_{i-1})}$$

$$\Rightarrow P_{+1}(w_i \mid w_{i-2}, w_{i-1}) = \frac{C(w_{i-2}, w_{i-1}, w_i) + 1}{C(w_{i-2}, w_{i-1})}$$
Add-One (Laplace) Smoothing

- Just pretend we saw everything one more time than we did.

\[
P_{\text{ML}}(w_i|w_{i-2}, w_{i-1}) = \frac{C(w_{i-2}, w_{i-1}, w_i)}{C(w_{i-2}, w_{i-1})}
\]

\[\Rightarrow P_{+1}(w_i|w_{i-2}, w_{i-1}) = \frac{C(w_{i-2}, w_{i-1}, w_i) + 1}{C(w_{i-2}, w_{i-1})}
\]

- NO! Sum over possible \(w_i \) (in vocabulary \(V \)) must equal 1:

\[
\sum_{w_i \in V} P(w_i|w_{i-2}, w_{i-1}) = 1
\]

- If increasing the numerator, must change denominator too.

Add-one Smoothing: normalization

- We want:

\[
\sum_{w_i \in V} C(w_{i-2}, w_{i-1}, w_i) + 1
\]

\[= C(w_{i-2}, w_{i-1}) + x
\]

- Solve for \(x \):

\[
\sum_{w_i \in V} C(w_{i-2}, w_{i-1}, w_i) + \sum_{w_i \in V} 1 = C(w_{i-2}, w_{i-1}) + x
\]

\[
C(w_{i-2}, w_{i-1}) + v = C(w_{i-2}, w_{i-1}) + x
\]

\[
v = x
\]

where \(v \) = vocabulary size.

Add-one example (1)

- *Moby Dick* has one trigram that begins with *I spent* (*it’s I spent in*) and the vocabulary size is 17231.

- Comparison of MLE vs Add-one probability estimates:

<table>
<thead>
<tr>
<th></th>
<th>MLE</th>
<th>+1 Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P(\text{three} \mid \text{I spent}))</td>
<td>0</td>
<td>0.00006</td>
</tr>
<tr>
<td>(\hat{P}(\text{in} \mid \text{I spent}))</td>
<td>1</td>
<td>0.0001</td>
</tr>
</tbody>
</table>

- \(\hat{P}(\text{in} \mid \text{I spent}) \) seems very low, especially since *in* is a very common word. But can we find better evidence that this method is flawed?

Add-one example (2)

- Suppose we have a more common bigram \(w_1, w_2 \) that occurs 100 times, 10 of which are followed by \(w_3 \).

<table>
<thead>
<tr>
<th></th>
<th>MLE</th>
<th>+1 Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>(P(w_3</td>
<td>w_1, w_2))</td>
<td>\frac{10}{100}</td>
</tr>
</tbody>
</table>

- Shows that the very large vocabulary size makes add-one smoothing steal way too much from seen events.

- In fact, MLE is pretty good for frequent events, so we shouldn’t want to change these much.
Add-\(\alpha\) (Lidstone) Smoothing

- We can improve things by adding \(\alpha < 1\).

\[
P_{+\alpha}(w_i|w_{i-1}) = \frac{C(w_{i-1}, w_i) + \alpha}{C(w_{i-1}) + \alpha}
\]

- Like Laplace, assumes we know the vocabulary size in advance.
- But if we don’t, can just add a single “unknown” (UNK) item, and use this for all unknown words during testing.
- Then: how to choose \(\alpha\)?

Better smoothing: Good-Turing

- Previous methods changed the denominator, which can have big effects even on frequent events.
- Good-Turing changes the numerator. Think of it like this:
 - MLE divides count \(c\) of \(N\)-gram by count \(n\) of history:
 \[
P_{\text{ML}} = \frac{c}{n}
\]
 - Good-Turing uses adjusted counts \(c^*\) instead:
 \[
P_{\text{GT}} = \frac{c^*}{n}
\]

Optimizing \(\alpha\) (and other model choices)

- Use a three-way data split: training set (80-90%), held-out (or development) set (5-10%), and test set (5-10%)
 - Train model (estimate probabilities) on training set with different values of \(\alpha\)
 - Choose the \(\alpha\) that minimizes cross-entropy on development set
 - Report final results on test set.
- More generally, use dev set for evaluating different models, debugging, and optimizing choices. Test set simulates deployment, use it only once!
- Avoids overfitting to the training set and even to the test set.

Good-Turing Smoothing

- Adjust actual counts \(c\) to expected counts \(c^*\) with formula

\[
c^* = (c + 1) \frac{N_{c+1}}{N_c}
\]

- Assuming we are building an \(N\)-gram model:
 - \(N_c\) number of \(N\)-grams that occur exactly \(c\) times in corpus
 - \(N_0\) total number of unseen \(N\)-grams
Good-Turing for 2-Grams in Europarl

<table>
<thead>
<tr>
<th>Count</th>
<th>Count of counts</th>
<th>Adjusted count</th>
<th>Test count</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>7,514,941,065</td>
<td>0.00015</td>
<td>0.00016</td>
</tr>
<tr>
<td>1</td>
<td>1,132,844</td>
<td>0.46539</td>
<td>0.46235</td>
</tr>
<tr>
<td>2</td>
<td>263,611</td>
<td>1.40679</td>
<td>1.39946</td>
</tr>
<tr>
<td>3</td>
<td>123,615</td>
<td>2.38767</td>
<td>2.34307</td>
</tr>
<tr>
<td>4</td>
<td>73,788</td>
<td>3.33767</td>
<td>3.34307</td>
</tr>
<tr>
<td>5</td>
<td>49,254</td>
<td>4.36967</td>
<td>4.35234</td>
</tr>
<tr>
<td>6</td>
<td>35,869</td>
<td>5.32928</td>
<td>5.33762</td>
</tr>
<tr>
<td>8</td>
<td>21,693</td>
<td>7.43798</td>
<td>7.15074</td>
</tr>
<tr>
<td>10</td>
<td>14,880</td>
<td>9.31304</td>
<td>9.11927</td>
</tr>
<tr>
<td>20</td>
<td>4,546</td>
<td>19.54487</td>
<td>18.95948</td>
</tr>
</tbody>
</table>

\(t_c \) are average counts of bigrams in test set that occurred \(c \) times in corpus: fairly close to estimate \(c^* \).

Good-Turing justification: 0-count items

- Estimate the probability that the next observation is previously unseen (i.e., will have count 1 once we see it)

\[
P(\text{unseen}) = \frac{N_1}{n}
\]

This part uses MLE!

- Divide that probability equally amongst all unseen events

\[
P_{GT} = \frac{1}{N_0} \frac{N_1}{n} \Rightarrow c^* = \frac{N_1}{N_0}
\]

Summary

- We can measure the relative goodness of LMs on the same corpus using cross-entropy: how well does the model predict the next word?

- We need smoothing to deal with unseen \(N \)-grams.

- Add-1 and Add-\(\alpha \) are simple, but not very good.

- Good-Turing is more sophisticated, yields better models, but we'll see even better methods next time.