Recap

• Last time, we talked about corpus data and some of the information we can get from it, like word frequencies.

• For some tasks, like sentiment analysis, word frequencies alone can work pretty well (though can certainly be improved on).

• For other tasks, we need more.

• Today: we consider sentence probabilities: what are they, why are they useful, and how might we compute them?
Intuitive interpretation

• “Probability of a sentence” = how likely is it to occur in natural language
 – Consider only a specific language (English)
 – Not including meta-language (e.g. linguistic discussion)

\[P(\text{the cat slept peacefully}) > P(\text{slept the peacefully cat}) \]
\[P(\text{she studies morphosyntax}) > P(\text{she studies more faux syntax}) \]
Language models in NLP

• It’s very difficult to know the true probability of an arbitrary sequence of words.

• But we can define a language model that will give us good approximations.

• Like all models, language models will be good at capturing some things and less good for others.
 – We might want different models for different tasks.
 – Today, one type of language model: an N-gram model.
Spelling correction

Sentence probabilities help decide correct spelling.

mis-spelled text

↓

(Error model)

possible outputs

↓

(Language model)

best-guess output

no much effert

no much effect

so much effort

no much effort

not much effort

...

not much effort
Automatic speech recognition

Sentence probabilities help decide between similar-sounding options.

speech input

↓

(Acoustic model)

possible outputs

↓

(Language model)

best-guess output

She studies morphosyntax

She studies more faux syntax

She’s studies morph or syntax

...

She studies morphosyntax
Machine translation

Sentence probabilities help decide word choice and word order.

non-English input

↓ (Translation model)

possible outputs

↓ (Language model)

best-guess output

She is going home
She is going house
She is traveling to home
To home she is going
...

She is going home
LMs for prediction

• LMs can be used for **prediction** as well as correction.

• Ex: predictive text correction/completion on your mobile phone.
 – Keyboard is tiny, easy to touch a spot slightly off from the letter you meant.
 – Want to correct such errors as you go, and also provide possible completions. Predict as as you are typing: `ineff...`

• In this case, LM may be defined over sequences of *characters* instead of (or in addition to) sequences of words.
But how to estimate these probabilities?

• We want to know the probability of word sequence $\vec{w} = w_1 \ldots w_n$ occurring in English.

• Assume we have some training data: large corpus of general English text.

• We can use this data to estimate the probability of \vec{w} (even if we never see it in the corpus!)
Probability theory vs estimation

• Probability theory can solve problems like:
 – I have a jar with 6 blue marbles and 4 red ones.
 – If I choose a marble uniformly at random, what’s the probability it’s red?
Probability theory vs estimation

• Probability theory can solve problems like:
 – I have a jar with 6 blue marbles and 4 red ones.
 – If I choose a marble uniformly at random, what’s the probability it’s red?

• But often we don’t know the true probabilities, only have data:
 – I have a jar of marbles.
 – I repeatedly choose a marble uniformly at random and then replace it before choosing again.
 – In ten draws, I get 6 blue marbles and 4 red ones.
 – On the next draw, what’s the probability I get a red marble?

• The latter also requires estimation theory.
Notation

• I will often omit the random variable in writing probabilities, using \(P(x) \) to mean \(P(X = x) \).

• When the distinction is important, I will use

 – \(P(x) \) for *true* probabilities
 – \(\hat{P}(x) \) for *estimated* probabilities
 – \(P_E(x) \) for estimated probabilities using a particular estimation method \(E \).

• But since we almost always mean estimated probabilities, may get lazy later and use \(P(x) \) for those too.
Example estimation: M&M colors

What is the proportion of each color of M&M?

- In 48 packages, I find\(^1\) 2620 M&Ms, as follows:

<table>
<thead>
<tr>
<th>Red</th>
<th>Orange</th>
<th>Yellow</th>
<th>Green</th>
<th>Blue</th>
<th>Brown</th>
</tr>
</thead>
<tbody>
<tr>
<td>372</td>
<td>544</td>
<td>369</td>
<td>483</td>
<td>481</td>
<td>371</td>
</tr>
</tbody>
</table>

- How to estimate probability of each color from this data?

\(^1\)Actually, data from: https://joshmadison.com/2007/12/02/mms-color-distribution-analysis/
Relative frequency estimation

- Intuitive way to estimate discrete probabilities:

\[P_{RF}(x) = \frac{C(x)}{N} \]

where \(C(x) \) is the count of \(x \) in a large dataset, and \(N = \sum_{x'} C(x') \) is the total number of items in the dataset.
Relative frequency estimation

- Intuitive way to estimate discrete probabilities:

\[
P_{RF}(x) = \frac{C(x)}{N}
\]

where \(C(x) \) is the count of \(x \) in a large dataset, and \(N = \sum_{x'} C(x') \) is the total number of items in the dataset.

- M&M example: \(P_{RF}(\text{red}) = \frac{372}{2620} = .142 \)

- This method is also known as \textit{maximum-likelihood estimation} (MLE) for reasons we’ll get back to.
MLE for sentences?

Can we use MLE to estimate the probability of \(\vec{w} \) as a sentence of English? That is, the prob that some sentence \(S \) has words \(\vec{w} \)?

\[
P_{\text{MLE}}(S = \vec{w}) = \frac{C(\vec{w})}{N}
\]

where \(C(\vec{w}) \) is the count of \(\vec{w} \) in a large dataset, and \(N \) is the total number of sentences in the dataset.
Sentences that have never occurred

the Archaeopteryx soared jaggedly amidst foliage

vs

jaggedly trees the on flew

• Neither ever occurred in a corpus (until I wrote these slides).
 \[C(\bar{w}) = 0 \] in both cases: MLE assigns both zero probability.

• But one is grammatical (and meaningful), the other not.
 \[\Rightarrow \text{Using MLE on full sentences doesn’t work well for language model estimation.} \]
The problem with MLE

• MLE thinks anything that hasn’t occurred will never occur (P=0).

• Clearly not true! Such things can have differing, and non-zero, probabilities:
 – My hair turns blue
 – I injure myself in a skiing accident
 – I travel to Finland

• And similarly for word sequences that have never occurred.
Sparse data

• In fact, even things that occur once or twice in our training data are a problem. Remember these words from Europarl?

 cornflakes, mathematicians, pseudo-rapporteur, lobby-ridden, Lycketoft, UNCITRAL, policyfor, Commissioneris, 145.95

 All occurred once. Is it safe to assume all have equal probability?

• This is a **sparse data** problem: not enough observations to estimate probabilities well. (Unlike the M&Ms, where we had large counts for all colours!)

• For sentences, many (most!) will occur rarely if ever in our training data. So we need to do something smarter.
Towards better LM probabilities

• One way to try to fix the problem: estimate $P(\bar{w})$ by combining the probabilities of smaller parts of the sentence, which will occur more frequently.

• This is the intuition behind N-gram language models.
Deriving an N-gram model

- We want to estimate $P(S = w_1 \ldots w_n)$.
 - Ex: $P(S = \text{the cat slept quietly})$.

- This is really a joint probability over the words in S: $P(W_1 = \text{the}, W_2 = \text{cat}, W_3 = \text{slept}, \ldots W_4 = \text{quietly})$.

- Concisely, $P(\text{the, cat, slept, quietly})$ or $P(w_1, \ldots w_n)$.
Deriving an N-gram model

- We want to estimate $P(S = w_1 \ldots w_n)$.
 - Ex: $P(S = \text{the cat slept quietly})$.

- This is really a joint probability over the words in S:
 $P(W_1 = \text{the}, W_2 = \text{cat}, W_3 = \text{slept}, \ldots W_4 = \text{quietly})$.

- Concisely, $P(\text{the, cat, slept, quietly})$ or $P(w_1, \ldots w_n)$.

- Recall that for a joint probability, $P(X, Y) = P(Y|X)P(X)$. So,

 $P(\text{the, cat, slept, quietly}) = P(\text{quietly}|\text{the, cat, slept})P(\text{the, cat, slept})$
 $= P(\text{quietly}|\text{the, cat, slept})P(\text{slept}|\text{the, cat})P(\text{the, cat})$
 $= P(\text{quietly}|\text{the, cat, slept})P(\text{slept}|\text{the, cat})P(\text{cat|the})P(\text{the})$
Deriving an N-gram model

• More generally, the chain rule gives us:

\[P(w_1, \ldots w_n) = \prod_{i=1}^{n} P(w_i|w_1, w_2, \ldots w_{i-1}) \]

• But many of these conditional probs are just as sparse!
 - If we want \(P(\text{I spent three years before the mast}) \)...
 - we still need \(P(\text{mast}|\text{I spent three years before the}) \).

Example due to Alex Lascarides/Henry Thompson
Deriving an N-gram model

- So we make an **independence assumption**: the probability of a word only depends on a fixed number of previous words (**history**).
 - **trigram model**: \(P(w_i|w_1, w_2, \ldots w_{i-1}) \approx P(w_i|w_{i-2}, w_{i-1}) \)
 - **bigram model**: \(P(w_i|w_1, w_2, \ldots w_{i-1}) \approx P(w_i|w_{i-1}) \)
 - **unigram model**: \(P(w_i|w_1, w_2, \ldots w_{i-1}) \approx P(w_i) \)

- In our example, a trigram model says
 - \(P(\text{mast}|I \text{ spent three years before the}) \approx P(\text{mast}|\text{before the}) \)
Trigram independence assumption

• Put another way, trigram model assumes these are all equal:
 – $P(\text{mast} | \text{I spent three years before the})$
 – $P(\text{mast} | \text{I went home before the})$
 – $P(\text{mast} | \text{I saw the sail before the})$
 – $P(\text{mast} | \text{I revised all week before the})$

 because all are estimated as $P(\text{mast} | \text{before the})$

• Not always a good assumption! But it does reduce the sparse data problem.
Estimating trigram conditional probs

- We still need to estimate \(P(\text{	exttt{mast}}|\text{	exttt{before, the}}) \): the probability of \texttt{mast} given the two-word history \texttt{before, the}.

- If we use relative frequencies (MLE), we consider:
 - Out of all cases where we saw \texttt{before, the} as the first two words of a trigram,
 - how many had \texttt{mast} as the third word?
Estimating trigram conditional probs

• So, in our example, we’d estimate

\[P_{MLE}(\text{mast}|\text{before, the}) = \frac{C(\text{before, the, mast})}{C(\text{before, the})} \]

where \(C(x) \) is the count of \(x \) in our training data.

• More generally, for any trigram we have

\[P_{MLE}(w_i|w_{i-2}, w_{i-1}) = \frac{C(w_{i-2}, w_{i-1}, w_i)}{C(w_{i-2}, w_{i-1})} \]
Example from *Moby Dick* corpus

\[
C(\text{before, the}) = 55 \\
C(\text{before, the, mast}) = 4 \\
\frac{C(\text{before, the, mast})}{C(\text{before, the})} = 0.0727
\]

- *mast* is the second most common word to come after *before the* in *Moby Dick*; *wind* is the most frequent word.

- \(P_{\text{MLE}}(\text{mast})\) is 0.00049, and \(P_{\text{MLE}}(\text{mast} | \text{the})\) is 0.0029.

- So seeing *before the* vastly increases the probability of seeing *mast* next.
Trigram model: summary

- To estimate $P(\vec{w})$, use chain rule and make an indep. assumption:
 $$P(w_1, \ldots w_n) = \prod_{i=1}^{n} P(w_i|w_1, w_2, \ldots w_{i-1})$$

 $$\approx P(w_1)P(w_2|w_1) \prod_{i=3}^{n} P(w_i|w_{i-2}, w_{w-1})$$

- Then estimate each trigram prob from data (here, using MLE):
 $$P_{MLE}(w_i|w_{i-2}, w_{i-1}) = \frac{C(w_{i-2}, w_{i-1}, w_i)}{C(w_{i-2}, w_{i-1})}$$

- On your own: work out the equations for other N-grams (e.g., bigram, unigram).
Practical details (1)

• Trigram model assumes two word history:

\[
P(\vec{w}) = P(w_1)P(w_2|w_1) \prod_{i=3}^{n} P(w_i|w_{i-2}, w_{w-1})
\]

• But consider these sentences:

\[
\begin{array}{ccccc}
 & w_1 & w_2 & w_3 & w_4 \\
(1) & he & saw & the & yellow \\
(2) & feeds & the & cats & daily
\end{array}
\]

• What's wrong? Does the model capture these problems?
Beginning/end of sequence

• To capture behaviour at beginning/end of sequences, we can augment the input:

\[
\begin{array}{cccccc}
 w_{-1} & w_0 & w_1 & w_2 & w_3 & w_4 \\
 (1) & <s> & <s> & he & saw & the & yellow & <s> \\
 (2) & <s> & <s> & feeds & the & cats & daily & <s>
\end{array}
\]

• That is, assume \(w_{-1} = w_0 = <s> \) and \(w_{n+1} = </s> \) so:

\[
P(\vec{w}) = \prod_{i=1}^{n+1} P(w_i | w_{i-2}, w_{i-1})
\]

• Now, \(P(</s>|the, yellow) \) is low, indicating this is not a good sentence.
Beginning/end of sequence

• Alternatively, we could model all sentences as one (very long) sequence, including punctuation:

 two cats live in sam ’s barn . sam feeds the cats daily . yesterday , he saw the yellow cat catch a mouse . [...]

• Now, trigrams like $P(. |$cats daily$)$ and $P(, |.$yesterday$)$ tell us about behavior at sentence edges.

• Here, all tokens are lowercased. What are the pros/cons of not doing that?
Practical details (2)

- Word probabilities are typically very small.

- Multiplying lots of small probabilities quickly gets so tiny we can’t represent the numbers accurately, even with double precision floating point.

- So in practice, we typically use negative log probabilities (sometimes called costs):
 - Since probabilities range from 0 to 1, negative log probs range from 0 to ∞:
 \[\text{lower cost} = \text{higher probability} \]
 - Instead of multiplying probabilities, we add neg log probabilities.
Summary

• “Probability of a sentence”: how likely is it to occur in natural language? Useful in many natural language applications.

• We can never know the true probability, but we may be able to estimate it from corpus data.

• N-gram models are one way to do this:
 – To alleviate sparse data, assume word probs depend only on short history.
 – Tradeoff: longer histories may capture more, but are also more sparse.
 – So far, we estimated N-gram probabilities using MLE.
Coming up next

- Weaknesses of MLE and ways to address them (more issues with sparse data).
- How to evaluate a language model: are we estimating sentence probabilities accurately?