Foundations of Natural Language Processing Lecture 1 Introduction

Alex Lascarides

(Slides based on those of Philipp Koehn, Alex Lascarides, Sharon Goldwater)

14 January 2020

What is Natural Language Processing?

What is Natural Language Processing?

Applications

- Machine Translation
- Information Retrieval
- Question Answering
- Dialogue Systems
- Information Extraction
- Summarization
- Sentiment Analysis
- ...

Core technologies

- Language modelling
- Part-of-speech tagging
- Syntactic parsing
- Named-entity recognition
- Coreference resolution
- Word sense disambiguation
- Semantic Role Labelling
- ...

This course

NLP is a big field! We focus mainly on core ideas and methods needed for technologies in the second column (and eventually for applications).

- Linguistic facts and issues
- Computational models and algorithms

More advanced methods and specific application areas covered in 4th/5th year courses:

- \bullet Natural Language Understanding, Generation and Machine Translation (NLU+)
- Text Technologies
- Automatic Speech Recognition

What does an NLP system need to "know"?

- Language consists of many levels of structure
- Humans fluently integrate all of these in producing/understanding language
- Ideally, so would a computer!

Words

This is a simple sentence words

Morphology

Parts of Speech

Syntax

Semantics

 $\exists y (\textit{this_dem}(x) \land \textit{be}(e, x, y) \land \textit{simple}(y) \land \textit{sentence}(y))$

Discourse

- 1. **Ambiguity** at many levels:
- Word senses: bank (finance or river?)
- Part of speech: chair (noun or verb?)
- Syntactic structure: I saw a man with a telescope
- Quantifier scope: Every child loves some movie
- Multiple: I saw her duck
- Reference: John dropped the goblet onto the glass table and it broke.
- Discourse: The meeting is cancelled. Nicholas isn't coming to the office today.

How can we model ambiguity, and choose the correct analysis in context?

Ambiguity

Inf2a started to discuss methods of dealing with ambiguity.

- non-probabilistic methods (FSMs for morphology, CKY parsers for syntax) return all possible analyses.
- probabilistic models (HMMs for POS tagging, PCFGs for syntax) and algorithms (Viterbi, probabilistic CKY) return the **best possible analysis**, i.e., the most probable one according to the model.

This "best" analysis is only good if our model's probabilities are accurate. Where do they come from?

Statistical NLP

Like most other parts of AI, NLP today is dominated by statistical methods.

- Typically more robust than earlier rule-based methods.
- Relevant statistics/probabilities are learned from data (cf. lnf2b).
- Normally requires lots of data about any particular phenomenon.

- 2. Sparse data due to Zipf's Law.
- To illustrate, let's look at the frequencies of different words in a large text corpus.
- Assume a "word" is a string of letters separated by spaces (a great oversimplification, we'll return to this issue...)

Word Counts

Most frequent words (word **types**) in the English Europarl corpus (out of 24m word **tokens**)

any word			nouns	
Frequency	Туре		Frequency	Туре
1,698,599	the		124,598	European
849,256	of		104,325	Mr
793,731	to		92,195	Commission
640,257	and	-	66,781	President
508,560	in	-	62,867	Parliament
407,638	that	-	57,804	Union
400,467	is		53,683	report
394,778	a		53,547	Council
263,040	Ι	_	45,842	States

Word Counts

But also, out of 93638 distinct word types, 36231 occur only once. Examples:

- cornflakes, mathematicians, fuzziness, jumbling
- pseudo-rapporteur, lobby-ridden, perfunctorily,
- Lycketoft, UNCITRAL, H-0695
- policyfor, Commissioneris, 145.95, 27a

Plotting word frequencies

Order words by frequency. What is the frequency of nth ranked word?

Plotting word frequencies

Order words by frequency. What is the frequency of nth ranked word?

Rescaling the axes

Zipf's law

Summarizes the behaviour we just saw:

$$f \times r \approx k$$

- f =frequency of a word
- r = rank of a word (if sorted by frequency)
- k = a constant

Zipf's law

Summarizes the behaviour we just saw:

$$f \times r \approx k$$

- f =frequency of a word
- r = rank of a word (if sorted by frequency)
- k = a constant

Why a line in log-scales? $fr = k \Rightarrow f = \frac{k}{r} \Rightarrow \log f = \log k - \log r$

Implications of Zipf's Law

- Regardless of how large our corpus is, there will be a lot of infrequent (and zero-frequency!) words.
- In fact, the same holds for many other levels of linguistic structure (e.g., syntactic rules in a CFG).
- This means we need to find clever ways to estimate probabilities for things we have rarely or never seen during training.

3. Variation

• Suppose we train a part of speech tagger on the Wall Street Journal:

Mr./NNP Vinken/NNP is/VBZ chairman/NN of/IN Elsevier/NNP N.V./NNP ,/, the/DT Dutch/NNP publishing/VBG group/NN ./.

3. Variation

• Suppose we train a part of speech tagger on the Wall Street Journal:

Mr./NNP Vinken/NNP is/VBZ chairman/NN of/IN Elsevier/NNP N.V./NNP ,/, the/DT Dutch/NNP publishing/VBG group/NN ./.

• What will happen if we try to use this tagger for social media??

ikr smh he asked fir yo last name

Twitter example due to Noah Smith

4. Expressivity

• Not only can one form have different meanings (ambiguity) but the same meaning can be expressed with different forms:

She gave the book to Tom vs. She gave Tom the bookSome kids popped by vs. A few children visitedIs that window still open? vs Please close the window

5 and 6. Context dependence and Unknown representation

- Last example also shows that correct interpretation is context-dependent and often requires world knowledge.
- Very difficult to capture, since we don't even know how to represent the knowledge a human has/needs: What is the "meaning" of a word or sentence? How to model context? Other general knowledge?

That is, in the limit NLP is hard because AI is hard

• In particular, we've made remarkably little progress on the Knowledge Representation problem...

Background needed for this course

We assume you are familiar with most/all of the following:

- Basic Python programming
- Finite-state machines, regular languages
- Context-free grammars
- Dynamic programming (e.g. edit distance, Viterbi, and/or CKY algorithms)
- Concepts from machine learning (estimating probabilities, making predictions based on data)
- Probability theory (conditional probabilities, Bayes' Rule, independence and conditional independence, expectations)
- Vectors, logarithms
- Concepts of syntactic structure and semantics and relationship between them (ideally for natural language but at least for programming languages)
- Some basic linguistic concepts (e.g. parts of speech, inflection)

Where we are headed

Informatics 2a discussed ideas and algorithms for NLP from a largely **formal**, **algorithmic** perspective. Here we build on that by

- Focusing on **real data** with all its complexities.
- Discussing some of the NLP techniques in more depth.
- Introducing some tasks and technologies that didn't fit into the Inf2a story.

Course organization

- Lecturers: Alex Lascarides and Shay Cohen
- Lectures: Tue/Fri 10:00-10:50 LTC, DHT.
- Labs: two groups (Mondays and Thursdays at 3:10pm, AT 6.06) Choose a lab group and register for it via LEARN Labs start next week!
- Web site: for slides, lectures, labs, assignments, due dates, etc http://www.inf.ed.ac.uk/teaching/courses/fnlp/
- Course mailing list: fnlp-students@inf. Register ASAP to get on the list!
- Course discussion forum: Piazza. Link for signing up to FNLP's piazza page is on FNLP website.

Outside work required

In addition to attending lectures, you are expected to keep up with:

- Readings from textbook: *Speech and Language Processing*, 3rd edition (online) and 2nd edition (paperback, International version), Jurafsky and Martin.
- NLP techniques in Python: Bird, S., E. Klein and E. Loper, *Natural Language Processing with Python*, (2009) O'Reilly Media
- Weekly (unassessed) labs (in Python). To help solidify concepts and give you practical experience. Help and feedback available from lab demonstrator.
- Lectures are being recorded. Recordings will be linked from the lectures page week by week. The audience is *not* in shot.
- Two assignments (in Python)
 - The second worth 30%
 - The first will be reviewed and marked, but will not contribute to your final mark
- Exam in May, worth 70% of final mark.

We will also provide some optional further readings/exercises for those who wish to stretch themselves. These will be clearly marked as optional (non-examinable).